Пластинчатый теплообменник: виды, характеристики, сферы применения

Пластинчатые теплообменники

Теплообменник и его виды

Теплообменник работает как аппарат-посредник между двумя средами, имеющими разную температуру. Существуют устройства регенеративного и рекуперативного типа, отличающиеся принципом работы.

В регенеративных теплообменниках предусмотрена одна рабочая поверхность, с которой по очереди контактируют жидкие среды. Рекуперативные аппараты имеют стенку из теплопроводного материала, которая отделяет движущиеся среды друг от друга. В промышленности получили распространение устройства именно такого типа.

Разновидности рекуперативных теплообменников:

  1. Пластинчатые – сборные модификации из соединенных модульных пластин с бесклеевыми термостойкими прокладками между ними (самый популярный вариант);
  2. Кожухотрубные – сварные или припаянные конструкции из труб, образующих решетку;
  3. Витые – оснащены концентрическими змеевиками, теплоноситель направляется по спиральной трубе и межтрубному пространству;
  4. Спиральные – металлические конструкции, изготавливаются из тонких металлических листов, свернутых в своеобразную спираль;
  5. С водяным или воздушным принципом работы.

Конструкция

К элементам конструкции пластинчатого теплообменника относятся:

  • две плиты (фиксированная и прижимная);
  • входные и выходные патрубки с соединениями разных типов;
  • набор герметично соединенных пластин, направляющих, резьбовых метизов;
  • подставка для установки в системе теплоснабжения.

Основной рабочий элемент конструкции – пластины из инертных материалов для передачи энергии между теплоносителями. Выполненные методом штамповки, они устойчивы к коррозии и воздействию любых агрессивных сред.

В собранном виде теплообменный аппарат состоит из плотно (герметично) примыкающих друг к другу пластин. На их стыке образуются каналы (щели). Толщина пластин варьируется от 0,4 до 1 мм. Они не отличаются по форме и выполнены из нержавеющей стали, реже из титана и других дорогих сплавов. Требования к материалу определяются задачами, для которых теплообменник предназначен.

В качестве изолирующего материала чаще всего задействуют каучук или полимерные композиты. При выборе следует учитывать жесткость условий эксплуатации, температурный диапазон, тип рабочей среды.

Рекомендуемые виды полимеров в зависимости от характеристик активных сред:

  • вода и гликоль – EPDM;
  • масляные и нефтесодержащие теплоносители – Nitril;
  • высокотемпературная среда, пар – Viton.

Основные виды пластинчатых теплообменников, их предназначение и преимущества:

1. Разборные (конструкция представляет собой пакет пластин и резиновые уплотнители):

  • низкие затраты на производство и монтаж;
  • регулируемая, легко настраиваемая производительность;
  • несложная дешевая эксплуатация, быстрый ремонт;
  • безотказность, минимальные интервалы простоя;
  • низкая энергоемкость;
  • возможность переработки.

Сфера применения пластинчатого теплообменника с разборной конструкцией: системы отопления, бассейны, холодильное и климатическое оборудование, горячее водоснабжение, теплопункты.

2. Паяные (цельная конструкция со спаянными пластинами, без резиновых прокладок):

  • компактность и низкая стоимость;
  • оптимальное соотношение производительности и стоимости;
  • быстрый и дешевый монтаж и сборка;
  • надежность и безотказность.

Область применения паяных конструкций: холодильные аппараты, компрессоры и турбинные установки, кондиционеры и вентиляторы, промышленные установки разного назначения.

3. Сварные и полусварные (соединенные при помощи сварных швов):

  • простая компактная конструкция без уплотняющих прокладок;
  • регулируемый поток;
  • устойчивость к действию агрессивных сред;
  • максимальный диапазон температур;
  • допустимое давление до 4 МПа, температура до 300 °С;
  • простота монтажа;
  • устойчивость к абразивным и агрессивным веществам;
  • надежность и длительный рабочий ресурс.

Сфера применения сварных и полусварных агрегатов: пищевая, химическая и фармацевтическая отрасль, системы кондиционирования и охлаждения, в том числе в промышленности и медицине, работа тепловых насосов и систем горячего водоснабжения.

Пластинчатые теплообменники – технические характеристики

Пластинчатый теплообменник отличается довольно высокими показателями мощности. Режим температуры теплоносителя может достигать 180 градусов. Надежные пластинчатые теплообменники широко применяются в сферах отопления, энергетики, пищевой промышленности, климатическом, холодильном и вентиляционном оборудовании.

Основные характеристики агрегата будут различаться в зависимости от типа конструкции и модели:

ПаяныеРазборныеПолусварныеСварные
Наивысший показатель температуры220°C200°C350°C900°C
Наивысший показатель давления25 Бар25 Бар55 Бар100 Бар
Наивысший показатель мощности5 Мвт75 Мвт75 Мвт100 Мвт
КПД90%95%85%85%
Гарантийный срок20 лет20 лет10-15 лет10-15 лет

К стандартным техническим параметрам пластинчатых аппаратов относятся:

  1. Материал пластин – чаще всего листовая тонкая сталь AISI304 или AISI316, титан, сплавы 254 SMO, хастеллой (на основе никеля).
  2. Температурный максимум теплоносителя, на который рассчитаны пластины – 180°C.
  3. Предельное давление среды – 25 кгс/кв.см.
  4. Площадь поверхности теплообмена – 0,1-2100 кв.м.
  5. Количество пластин 7-10 штук и более, зависит от сферы применения.

При выборе конкретной модели целесообразно учитывать условия эксплуатации – для большей мощности требуется больше пластин. Их количество определяет производительность и полезное действие системы теплоподачи или охлаждения.

Технические характеристики герметичных пластинчатых теплообменников MIT

Тип504513514521522617
Ширина, мм200360360460460337
Высота, мм480930930109010901047
Глубина, мм200-400250-1000250-1000250-1500250-1500250-1250
Диапазон гор.оси, мм70140140210210150
Диапазон верт.оси, мм381640640720720800
Макс. Раб.давл., бар202020202020
Испытательное давл., бар252525252525
Вес, кг23+0.25n98+0.75n98+0.75n225+1.1n225+1.1n116+0.91n
Диаметр соединения1 1/4″ Резьбовое2″ Резьбовое или фальцевое2″ Резьбовое или фальцевое4″ Фальцевое4″ Фальцевое2 1/2″ Резьбовое или фальцевое

Более подробную информацию по техническим характеристикам можно узнать в этом каталоге

Технические характеристики сварных пластинчатых теплообменников MIT

ТипВЗ-012ВЗ-014ВЗ-020ВЗ-027ВЗ-030
Ширина, мм72777211195
Высота, мм186207314311325
Глубина, (мин-макс)7+2.3n7+2.3n7+2.3n9+2.4n9+1.5n
Диапазон гор.оси, мм4042425039
Диапазон верт.оси, мм154172278250269
Макс. Раб.давл., бар3030303030
Испытательное давл., бар4545454545
Вес, кг0.6+0.044n0.7+0.06n1.1+0.09n1.2+0.013n1+0.09n

Более подробную информацию по техническим характеристикам можно узнать в этом каталоге

Отраслевое применение пластинчатых теплообменников

На коммунальных объектах

Пластинчатые теплообменники помогают решать широкий спектр задач: подогревать воду для горячего водоснабжения, бойлеров и бассейнов, систем вентиляции и теплых полов. Их часто задействуют в составе независимого контура отопительной системы, питающейся от ТЭЦ или ЦТП. При этом температура не должна превышать 180 °C, давление – 16 кПа.

В пищевой промышленности

Теплообменники как элемент охладительного, испарительного и пастеризующего оборудования незаменимы в производстве молочных продуктов, сахара, растительных масел, пива, спирта. Самые востребованные в пищевой промышленности модификации – разборные и паяные.

Металлургия и судостроение

Многие технологические процессы в металлургии связаны с сильным нагреванием конструкций и агрегатов. Теплообменники охлаждают оборудование и рабочие среды, смазку в гидравлике и травильные растворы. В судостроении теплообменники применяют для охлаждения двигателя, в составе отопительной системы и ГВС.

Теплообменники необходимы, чтобы охлаждать горячие вещества и подогревать жидкости. Они входят в состав сетевых комплексов, систем подготовки воды и аппаратов низкого давления. В нефтегазовом производстве востребованы титановые конструкции с листом до 0,7 мм и уплотнителем из полимеров NBR или «Витон».

Техническое Задание и Опросный лист по отраслям :

  • ТЗ расчета теплообменника для холодильной промышленности;
  • ТЗ расчета теплообменника для энергетики и нефтегаза;
  • ТЗ расчета теплообменника для теплоснабжения и ЖКХ;
  • ТЗ расчета теплообменника для перерабатывающей промышленности;
  • ТЗ расчета теплообменника для морского применения;
  • ТЗ расчета теплообменника для фармацевтики;
  • ТЗ расчета теплообменника для машиностроения и металлургии;

Технические преимущества конструкции

Если сравнивать технические параметры с кожухотрубными моделями, можно выделить следующие особенности разборных пластинчатых конструкций:

  1. Повышенный индекс теплопередачи (3-5 вместо 1);
  2. Допустимая разность температур рабочих сред всего 1-2% (в кожухотрубных конструкциях 5-10 градусов);
  3. Есть возможность произвольно менять площадь поверхности, просто добавляя и убирая пластины;
  4. При сборке не требуется сварка и вальцовка за счет разборной конструкции;
  5. Более простое обслуживание, осмотр, диагностика неполадок, удобный доступ к внутренним элементам, замена и промывка пластин;
  6. В 8 раз меньше затраты времени на разборку (15 минут вместо 2 часов);
  7. Простая и оперативная замена уплотнителей (клей не используется);
  8. Моментальное обнаружение течи без разборки устройства;
  9. Неподверженность коррозии и нечувствительность к вибрациям;
  10. Ресурс безотказной работы до капитального ремонта 20 лет (кожухотрубные модели требуют ремонта через 5-10 лет);
  11. Пластинчатые агрегаты выигрывают в весе и размерах;
  12. Не требуется теплоизоляция и специальный фундамент.

Принцип работы и устройство пластинчатого теплообменника

В каждой из пластин для теплоносителя и уплотнения предусмотрено по два отверстия:

  1. для подведения и отведения разогретого теплоносителя;
  2. для герметичного соединения пластин и изоляции теплоносителей за счет компактных уплотнителей.

Характерная особенность и преимущество пластинчатого теплообменника в том, что движение теплоносителя сопровождается завихрениями потока, что резко усиливает обмен тепловой энергией. Сопротивление при этом минимальное, что сокращает образование накипи. За счет многократного и интенсивного теплового обмена эффективность работы и КПД пластинчатого теплообменника одни из самых высоких.

Последствия неправильного подбора теплообменника

Для длительной безотказной эксплуатации важно выбрать модель, которая будет оптимальной для конкретных сред, температурных режимов, мощности и периодичности нагрузки. Выбрать подходящий по всем критериям вариант может только специалист. Обращение к профессионалам гарантирует отсутствие поломок в течение всего срока службы устройства. Отпадает необходимость в частом сервисном обслуживании и ремонте. Правильный выбор системы исключает распространенную проблему стекловидной накипи, ведущую к поломкам устройства.

Автоматика и подключение

При монтаже оборудования важно учитывать, что теплообменник всегда работает как элемент системы. Он не используется в качестве самостоятельного аппарата. Вместе с теплообменником в системе задействовано следующее оборудование: обратные клапаны, запорная арматура (комплекс задвижек, заслонок), контрольно-измерительные аппараты – манометры, термометры, циркуляционные насосы и другие виды приборов и агрегатов.

Читайте также:  Печь Булерьян для отопления дома: плюсы и минусы, схема устройства печи

Варианты подключения пластинчатого теплообменника, их достоинства и недостатки.

1. Независимая одноступенчатая параллельная схема.

  • Экономичная установка, экономия свободного пространства;
  • Простота конструкции.
  • Отсутствует подогрев холодного теплоносителя.

2. Двухступенчатая смешанная схема.

  • За счет подогрева входящего теплоносителя обратным потоком эффективность увеличивается на 40%.
  • При проектировании системы горячего водоснабжения нужно подключать сразу два теплообменника, что удорожает решение.

3. Двухступенчатая последовательная схема.

  • Стабилизируется сетевая нагрузка, растет эффективность применения теплоносителя.
  • Уменьшаются расходы на 60% в сравнении с параллельной схемой и на 20-25% в сравнении со смешанной.

  • Невозможность 100% автоматизации.

Подбор пластинчатого теплообменника

Чтобы правильно подобрать пластинчатый теплообменник, необходимо рассчитать его технические параметры.

За основу берутся следующие данные:

  1. – схема присоединения ГВС;
  2. – тепловая нагрузка (мощность);
  3. – данные о греющей среде:
    • температура на входе (для зимы/ лета), в °С;
    • температура на выходе (для зимы/ лета), в °С;
    • расход среды (если нет данных по мощности), в куб. м/час;
    • допустимые потери давления (атм.);
  4. – данные о нагреваемой среде:
    • входная температура (зима/лето), в °С;
    • выходная температура (зима/лето), в °С;
    • расход среды (если нет данных по мощности), в куб. м/час;
    • допустимые потери давления (в атм.);
    • запас мощности (в %).

Пример расчета

Пластинчатые теплообменники относятся к индивидуальному инженерному оборудованию, которое отдельно выбирается, настраивается и адаптируется под каждый объект. Укажите нам конкретные технические параметры по вашему проекту, и мы сразу рассчитаем, какое оборудование необходимо в вашем случае.

Чтобы оставить нам данные для расчетов, заполните онлайн форму заявки на сайте, напишите или позвоните. Ниже мы приводим список основных параметров, которые нужны, чтобы рассчитать пластинчатый теплообменник.

  1. Мощность (нагрузка) – количество тепловой энергии, необходимое для отопления и горячего водоснабжения объекта (измеряется в Гкал/час, ккал/час, кВт/час).
  2. Температурные графики – какую температуру дает и забирает обратно теплосеть, какой температурной отметки необходимо достичь.

Посмотреть эти характеристики можно в договоре с теплосетью. Там приведены технические условия и прописаны температурные графики, а также мощность, отведенная на отопление и горячее водоснабжение.

Основываясь на предоставленных вами данных, мы рассчитываем теплообменник и информируем вас о его стоимости и условиях поставки. Предоставляем подробный расчет, техническое описание требуемого аппарата с указанием габаритов и веса теплообменника пластинчатого.

Расчет от нашей компании производится с помощью профессионального программного обсечения

Преимущества заказа пластинчатого теплообменника у нас:

  1. Точный расчет теплообменника. Подбираем адаптированное оборудование под ваш проект.
  2. Гарантия объективной стоимости. Оптимизируя мощность оборудования, не завышаем цену.
  3. Оперативно обрабатываем заявки.
  4. Организуем изготовление, доставку и подключение пластинчатого теплообменника на выгодных условиях.
  5. Предлагаем оптовые цены за счет прямого сотрудничества с ведущими производителями.
  6. Несем полную ответственность за соблюдение сроков и качество техники.

Звоните, мы поможем с решением вашей задачи, рассчитаем и спроектируем аппарат, организуем доставку и установку. Предлагаем пластинчатые теплообменники российского производства с высоким КПД и выгодными техническими параметрами и характеристиками. В каталоге представлены приблизительные описания моделей, назначение и особенности эксплуатации теплообменников пластинчатого типа.

Пластинчатый теплообменник: конструкция, принцип работы, виды

Узнайте особенности и области применения разборных пластинчатых теплообменников.

Пластинчатый теплообменник – это важный элемент в системе отопления и горячего водоснабжения, который предназначен для теплообмена между двумя рабочими средами. Между теплопередающими пластинами в противотоке двигаются греющий и нагреваемый теплоносители без смешивания между собой.

Например, устройство для ГВС мощностью 670 ккал/ч. Один контур – горячая вода 70 градусов, а второй контур холодная вода 5 градусов. Установка позволяет нагревать второй контур до 50 градусов, охлаждая первый до 40 градусов.

Теплообменник и его виды

Теплообменник – это специальный аппарат, который предназначен для обмена тепла между двумя рабочими средами с различной температурой. Существует множество типов и конструкций. По принципу работы теплообменные устройства разделяются на регенеративные и рекуперативные.

Рекуперативный тип отличается тем, что процесс обмена происходит между теплопередающими пластинами. Потоки изолированы и разделены.

Регенеративный тип характеризуется тем, что обмен осуществляется на одной поверхности, с которой теплоносители контактируют поочередно.

Из рекуперативных наиболее распространенными являются:

  • Кожухотрубные – имеют цилиндрическую форму, состоят из кожуха и трубного пучка.
  • Пластинчатые – состоят из тонких теплопередающих пластин и резиновых уплотнений для герметичности. Имеют разборную конструкцию, что значительно упрощает обслуживание в процессе эксплуатации.
  • Витые – конструкция состоит из спиральной трубки, внутри которой движутся рабочие среды.
  • Спиральные – по принципу работы схожи с пластинчатыми, но более устойчивы к воздействию высокого давления и температуры. Имеют сварную спиральную конструкцию.

Рекуперативные наиболее востребованы в промышленности, жилищно-коммунальном хозяйстве и производстве.

Преимущества заказа теплообменного и котельного оборудования у нас

  • Доставка по России, Казахстану и другим странам СНГ от 3 дней
  • Даем дилерские цены заводов-производителей на 30% ниже рыночных
  • Подписываем официальный договор – гарантия до 3 лет
  • Собственное производство пластинчатых видов – изготовим за 3 дня
  • Профессиональный подбор оборудования

Просто позвоните.. Наш инженер осуществит точный расчет оборудования.

Конструкция пластинчатого устройства

Основой конструкции пластинчатого вида агрегатов являются теплопередающие пластины и уплотнения, которые стянуты болтами между прижимными плитами. Основной материал из которого изготавливают пластины AISI 316 (нержавеющая сталь) толщиной от 0,4 до 1 мм. Для специальных применений возможно изготовление из титана и других сплавов.

На основе синтетического каучука производятся уплотнения, которые препятствуют протечкам и служат для герметичности агрегата.

  • Нитрильный каучук (NBR): для вязкой или водной рабочей среды;
  • Этилен-пропиленовый каучук (EPDM): для химических веществ без содержания минеральных масел и жиров.
  • Фтор-каучук (VITON / FKM): специальный материал, высоко устойчивый к химическим и агрессивным теплоносителям.

Технические характеристики

  • материал пластин: нержавеющая сталь AISI304, AISI316, 254SMO, Hastelloy, титан, палладий и др.
  • температура сред не более 180°C
  • максимальное рабочее давление до 15 бар
  • площадь поверхности теплообмена от 0,1 кв. м до 2100 кв. м
  • количество пластин зависит от требуемой мощности

Принцип работы

Сферы применения ЖКХ

В жилищно-коммунальном хозяйстве в основном применяют пластинчатые для подогрева воды в системе отопления и горячего водоснабжения, вентиляции, нагрева воды в бассейнах.

В пищевой промышленности агрегаты нашего типа нашли применение в системах пастеризации молока и молочных продуктов, в системах охлаждения и пастеризации пивного сусла, вина и других напитков.

В металлургической промышленности их применяют для охлаждения оборудования и рабочих сред. Например, жидкости в станках и печах для плавки.

В нефтегазовой отрасли теплообменное оборудование используют для охлаждения жидких и газообразных сред, в установках химподготовки.

На судах теплообменные устройства служат для охлаждения двигателя, масел и основных узлов с применением морской воды.

Разборные пластинчатые виды

Паяные виды

Нужна консультация?

Инженеры компании помогут Вам осуществить правильный расчет для Вашего объекта и подобрать наиболее подходящую модель.

Свяжитесь с нами любым удобным для Вас способом и получите расчет в течение 20 минут.

Заполните форму в правой части страницы или позвоните по номеру +7 (804) 333-70-94 и проконсультируйтесь с нашим специалистом.

Применение
пластинчатых
теплообменников

Примеры использования теплообменного оборудования:

Отпуск циркуляционной воды

Охлаждение гидравлического масла

Процесс нагрева воды

Двойной маслоохладитель с запорно-регулирующей арматурой

Охладитель корабельного двигателя

Система тонкой очистки

Заключительная стадия производства

Охлаждение циркуляционной воды на промышленной ТЭС

Охлаждение циркуляционной воды на промышленной ТЭС

Монтаж теплообменника на заводе

Области применения пластинчатых теплообменников

Механическое производство

  • охлаждающие машины
  • охлаждение гидравлического масла
  • охлаждение смазочно-охлаждающих жидкостей
  • охлаждение трансмиссионного масла

Поршневые и турбинные двигатели

  • охлаждение машин
  • теплообменники для дизельных электростанций
  • охлаждение газовой турбины
  • охлаждение паровой турбины
  • охлаждение масляной турбины

Энергетические станции

  • охлаждение циркуляционной воды
  • охлаждение смазочных материалов
  • теплопередающие станции

Судоходство

  • центральное охлаждение
  • охлаждение машинного масла

Компрессоры

  • охлаждение машинного масла
  • охлаждение компрессора

Текстильная индустрия

  • возврат тепла от очистителей
  • охлаждение окрашивающих машин
  • подогрев красок

Отопление, Вентиляция, Кондиционирование

  • центральные тепловые пункты
  • установки лучистого отопления
  • нагрев циркуляционной воды
  • солнечные установки
  • установки центрального холодоснабжения
  • системы кондиционирования
  • холодильные системы

Пищевая промышленность

  • охлаждение молока
  • охлаждение сусла
  • пастеризационные установки
  • возврат тепла с производств
  • Обработка поверхностей
  • охлаждение электролита
  • охлаждение аэрозольных ванн
  • охлаждение ванн для гальванопокрытия
  • нагрев обезжиривающих ванн
  • нагрев фосфатных ванн

Сталелитейное производство

  • охлаждение формы
  • непрерывное литьевое производство
  • охлаждение печи
  • охлаждение кокса
  • охлаждение смазки машин

Автомобильная промышленность

  • охлаждение прессов
  • охлаждение шлифовальных машин
  • охлаждение тестируемых двигателей
  • охлаждение эмульсий
  • центральное охлаждение

Сахарная индустрия

  • нагрев сырых соков
  • нагрев газированных соков
  • подогрев концентрированных и разбавленных соков
  • нагрев сиропов

Виды теплообменников и их применение

Сферы использования паяных теплообменников:

  • системы отопления и горячего водоснабжения (ГВС) котельных
  • тепловые пункты
  • бассейны
  • жилые дома и коттеджи
  • холодильная техника (пищевая промышленность)
  • климатическое оборудование (конденсатор или испаритель)

Сферы использования разборных теплообменников:

  • отопление, вентиляция и кондиционирование
  • компрессорные и турбинные установки
  • промышленность
  • холодильная техника

Сферы использования сварных теплообменников:

  • регулирование температур в химическом и фармацевтическом производстве
  • оборудование для выпуска напитков
  • охлаждение лазерной техники
  • в построении системы кондиционирования и тепловых насосах
  • подогрев воды для бытовых и промышленных нужд
  • подогрев воды для отопительной системы
  • в морозильном оборудовании (конденсаторы, испарители)
  • аппаратура для бань
  • в сочетании с медицинским оборудованием
  • термодинамика в оборудовании для пищевой отрасли
  • любой технологический процесс с необходимостью забора тепла или охлаждения
  • системы для извлечения обратного тепла (рекуперации)

Чтобы определить точную модель пластинчатого теплообменного оборудования для ваших условий эксплуатации, необходимо проконсультироваться со специалистом! Просим оставить Ваш номер телефона, и мы свяжемся с Вами в течении 1 минуты.

Читайте также:  Термостойкий клей для печей и каминов: виды и характеристики, особенности

Пластинчатые теплообменные аппараты: типы, устройство и принцип работы

Введение

Пластинчатый теплообменник – один из видов рекуперативных теплообменных аппаратов, в основе работы которого лежит теплообмен между двумя средами через контактную пластину без смешения.

Типы, устройство и принцип работы пластинчатых теплообменников

Принцип работы всех пластинчатых теплообменных аппаратов одинаков:

  1. На входы ТО подаются теплоносители.
  2. Теплоносители движутся по внутреннему контуру теплообменного агрегата, который сформирован пакетом пластин.
  3. В процессе движения, контактируя с поверхностью пластины, более горячий теплоноситель отдает часть тепла нагреваемой среде.
  4. С выходов теплоносители, с изменившейся температурой, поступают в систему отопления, водоснабжения или вентиляции.
  5. Входные и выходные отверстия теплообменных аппаратов могут иметь различное сечение (у агрегатов Ридан диаметр достигает 500 мм), и с помощью патрубков подключаются к трубопроводу основной системы.

Данный принцип действия и устройство пластинчатого ТО хорошо продемонстрированы в следующем видео:

Принцип работы пластинчатого теплообменника

Виды пластинчатых теплообменников в зависимости от конструкции:

Пластинчатые разборные теплообменные аппараты

Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения.

Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

Конструкционная схема разборного теплообменника

Разборный теплообменник состоит из следующих элементов:

  • Неподвижная прижимная плита – основной элемент.
  • Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
  • Пакет пластин – главный функциональный элемент, который образует внутренний контур устройства и осуществляет теплообмен.
  • Несущая база – направляющая балка, на которую надеваются пластины во время сборки агрегата.
  • Подвижная прижимная плита – прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
  • Опорная станина – вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).

Благодаря высокой скорости рабочих сред внутри разборных теплообменных аппаратов отложения и засоры скапливаются на его внутренних поверхностях медленнее, чем на поверхностях кожухотрубных агрегатов.

Несомненное достоинство данного вида ТО – возможность полной разборки аппарата, что позволяет производить не только промывку пластин, но и их механическую очистку.

Также стоит отметить, что возможность полной разборки агрегата позволяет не заменять его целиком в случаях протечек, а быстро выявить нерабочие элементы, поменять их и вновь запустить теплообменник в эксплуатацию. При наличии необходимых запасных частей «под рукой» вся процедура займет от нескольких часов до 1 часа.

Паяные теплообменные аппараты

Паяные теплообменники также в своей основе содержат пакет пластин, но отличие от разборных заключается в том, что они спаяны между собой, поэтому сборка/разборка такого пакета – невозможна.

Пайка производится с помощью никеля или меди, поэтому обозначают два основных вида паяных пластинчатых теплообменников: никельпаяный и меднопаяный. Никелевый припой используется для аппаратов, которые будут работать с более агрессивными средами.

Паяный пластинчатый теплообменник в разрезе

Паяные теплообменные аппараты применяются в основном в бытовом сегменте благодаря своей низкой стоимости, простоте и небольшим габаритам. Чаще всего подобный тип устройств можно встретить в системах отопления частных домов, где теплообменник подключается к водонагревательному котлу.

Полусварные теплообменники

Полусварные теплообменные аппараты – агрегаты, в которых пакет пластин сделан комбинированным способом:

  • пластины попарно свариваются между собой;
  • с внешней стороны такого сдвоенного мини-пакета прикрепляются уплотнения;
  • далее прикрепляется следующий сваренный мини-пакет.

Места попарной сварки пластин

Подобный тип конструкции позволяет использовать полусварные теплообменные аппараты в работе с агрессивными средами или в охлаждении, поскольку сварка пластин исключает возможность утечки фреона в охлаждающем контуре.

Сварные теплообменники

Сварные теплообменные аппараты – устройства, в которых пластины сварены между собой без использования уплотнителей.

Внешний вид сварного теплообменника

Один из потоков теплоносителей движется по гофрированным каналам, второй по трубчатым. Принцип работы пластинчатого сварного теплообменника показан в этом видео:

Принцип работы сварного теплообменника

Сварные теплообменные аппараты применяются в технических процессах с предельными параметрами: высокими температурами (до 900 градусов Цельсия), давлением (до 100 бар) и крайне агрессивными средами, поскольку отсутствие резиновых уплотнителей и сварной метод сцепления исключают возможность протечки и смешения сред.

Основные недостатки подобного типа агрегатов: высокая стоимость и габариты.

Применение пластинчатых теплообменников

Пластинчатые теплообменные аппараты используются в:

  • энергетике;
  • отоплении;
  • вентиляции и кондиционировании;
  • судоходстве;
  • пищевой промышленности;
  • машиностроении;
  • автомобилестроении;
  • металлургии.

Технические характеристики пластинчатых теплообменников

Пластинчатый теплообменник имеет различные технические характеристики в зависимости от типа конструкции:

Пластинчатый теплообменник

Наиболее популярными стали пластинчатые теплообменники. Они передают тепло от горячего носителя к обогреваемой среде через пластины. Существует множество видов теплообменников, но подробно мы рассмотрим наиболее качественный вид – это пластинчатый теплообменник.

Как устроен пластинчатый теплообменник

Пластинчатый теплообменник представляет собой конструкцию, которая состоит из нескольких элементов:

  1. Несколько пластин.
  2. Крепежи для стягивания двух плит, которые в итоге образуют раму.
  3. Подвижная и неподвижная плита.
  4. Направляющие верхние и нижние. Они имеют вид прута с сечением в виде круга.

Размер и вес теплообменника зависит от количества пластин. Рама может быть разного размера в зависимости от мощности оборудования. Производительность увеличивается за счет количества пластин в пластинчатом теплообменнике.

В каждой модели оборудования есть определенный показатель, который определяет количество встраиваемых пластин. Для обеспечения герметизации протоков, по которым будет протекать теплоноситель, в пластины устраивают резиновые прокладки. Чтобы обеспечить плотность при соприкосновении двух прокладок, которые расположены на соседних пластинах, стягивают пластины подвижной плиты к неподвижной.

Крепежи и рама выполняют функцию создания корпуса и практически не несут никаких нагрузок. Все нагрузки воспринимают на себя пластины и прокладки.

Характеристики пластинчатого теплообменника

В зависимости от назначения теплообменника, прокладки и пластины выполняют из разных материалов. Область применения пластинчатых теплообменников очень большая. В данном случае мы рассматриваем теплообменник для отопления дома, в котором он выступает как теплосиловое оборудование. Для отопительной системы пластины обычно изготавливают из нержавейки, а прокладки делают резиновые. При пластинах, изготовленных из нержавеющей стали, оборудование может соприкасаться с водой, которая нагревается до 110 ° .

Для сложных процессов, в которых участвуют кислоты или масло, пластины изготавливают из разных сплавов, например, таких, как никель или титан. Прокладки же выполняют из асбестового материала.

Подобрать теплообменник и произвести расчет можно с помощью специальной программы. Для этого используют некоторые параметры оборудования:

  1. Первоначальная температура теплоносителя.
  2. Расход теплоносителя.
  3. Расход для нагреваемой среды.
  4. Необходимая температура для нагрева жидкости.

Важно! В качестве обогревающей среды может выступать вода или пар. Вода нагревается от 95 до 115 ° , а пар до 180 ° . Такие значения напрямую зависят от типа котла. Для того чтобы температура воды получилась не больше 70 ° , подбирают специальное количество и размер пластин.

Преимущества

К преимуществам можно отнести несколько факторов:

  • Небольшие размеры теплообменника. Следовательно, такое оборудование можно устанавливать в небольших помещениях;
  • Обеспечивает большой расход;
  • Диапазон расходов и площадей обмена весьма большой;
  • При наименьшей площади за 1 час протекает 0,2 м3 жидкости, а при наибольшей – 2000 м2 с учетом расхода более 3600 м3/ч.

Виды пластинчатых теплообменников

Разделяют несколько видов пластинчатых теплообменников:

  1. Сварные или паяные. В теплообменниках такого типа нет резиновых прокладок, а пластины жестко соединяются между собой и помещаются в цельный корпус. Такие теплообменники можно приспособить для нагрева и даже охлаждения воды в частном доме.
  2. Разборные. Такая модель позволяет быстро ремонтировать и обслуживать теплообменник.

Для чего применяют пластинчатый теплообменник

Применяют пластинчатые теплообменники очень часто. Сфера их применения безгранична. Мы рассмотрим самые популярные варианты установки пластинчатого теплообменника:

  • Для охлаждения станков или машин, теплообменники применяют в металлургии и машиностроении.
  • Отлично подходит пластинчатый теплообменник для охлаждения продуктов питания, поэтому его широко используют в пищевой промышленности.
  • Для обогрева воды в бассейне, водопроводе или отопления дома.
  • Для машинной промышленности.
  • В связи с тем, что нефтепродукты требуется охлаждать, применяют пластинчатые теплообменники в нефтяной промышленности.
  • В суднах необходимо охлаждать различные системы и подогревать воду, поэтому такие теплообменники широко применяют.

Такие теплообменники имеют воздухоохладитель, а также подогреватель для жидкостей. Их изготавливают из качественных материалов, которые тяжело подвергаются коррозии. А следовательно, срок эксплуатации оборудования высок.

Принцип работы

Принцип работы пластинчатого теплообменника является сложным. Заключается это в том, что пластины расположены друг к другу с поворотом на 180 градусов. Их компонуют в один пакет из четырех пластин, создавая, таким образом, два коллекторных контура для подачи и отвода теплоносителя. Но при этом два крайних элемента не могут участвовать в теплопроцессе.

Рассмотрим, какие виды компоновки бывают:

  • Многоходовая компоновка является сложной схемой, так как теплообменнику приходится перемещаться по неизменному количеству каналов. Происходит это из-за установки дополнительных пластин, в которые установлены глухие порты. В эксплуатации такая компоновка довольна затруднительна;
  • При одноходовой компоновке теплоноситель делят на потоки, которые параллельны друг другу. Он проходит по каналам и стекает в выводящий порт.

Пластинчатые теплообменники при одноходовой компоновке намного выгоднее использовать, нежели с многоходовой. В таком случае обслуживание оборудования будет намного проще.

Читайте также:  Бойлер Электролюкс: характеристики, плюсы и минусы, обслуживание, виды

Перед выбором теплообменник необходимо внимательно изучить всю информацию о данном приборе. Выбор моделей очень велик, поэтому следует тщательно рассчитать требуемую мощность и область применения теплообменника. Отрегулировать мощность оборудования можно с помощью прибавки или снятия пластин. Если вы купите теплообменник с небольшой мощностью, вы сможете сэкономить свои средства, а в дальнейшем добавить нужное количество пластин.

Для укрепления каналов между пластинами можно купить прокладки и резинки, которые смогут выдержать большие перепады температуры. Каналы теплообменника герметичны, поэтому такое оборудование является безопасным.

Назначение теплообменников

Теплообменник – прибор, главная функция которого заключается в передаче тепловой энергии от одной рабочей среды к другой. В качестве теплоносителя может выступать газообразное вещество, кислоты и щелочи, пар, вода и различные растворы.

Самыми популярными на сегодняшний день теплообменными аппаратами признаны пластинчатые установки. Их успешно применяют в следующих сферах:

  • химическая;
  • нефтеперерабатывающая;
  • газовая;
  • атомная;
  • нефтехимическая;
  • энергетическая;
  • коммунальная сфера.

Конструкцию устройства, материал комплектующих и иные параметры нужно выбирать исходя из особенностей технологического процесса и необходимой производительности. Подробнее о видах теплообменных аппаратов и их назначении рассказывают коллеги из компании «ПроТепло» https://proteplo.org .

Использование теплообменников в разных системах

Зачем нужен теплообменник? Область эксплуатации данных устройств можно разделить на несколько категорий: промышленность, коммунальное хозяйство и бытовые нужды. В каждом случае установка будет отличаться материалом исполнения, габаритами и мощностью, а также циркулирующими рабочими средами.

В системе отопления

Теплообменное оборудование в системе отопления позволяет значительно снизить расход ресурсов и добиться высокой степени контроля и регулировки процесса.

Система отопления может быть:

  • зависимой – система без теплообменника, когда тепло поступает от центрального теплового пункта регулярно в определенном количестве;
  • независимой – система с теплообменником, который позволяет регулировать количество поступающей энергии в соответствии с потребностями конечного потребителя.

Зачем нужен теплообменник в системе отопления? Он разделяет единую конструкцию на две части: одна из них относится к поставщику, а другая – к потребителю тепла. Аппарат служит промежуточной станцией, через которую проходит горячая вода с различными примесями: антифриз, масло и иные компоненты.

Теплообменник в ИТП

Использование пластинчатого оборудования для автоматизации индивидуального теплового пункта позволяет снизить потери энергии до 40% за счет высокой эффективности установки.

Независимая система отопления состоит из главного пункта, который распределяет тепло между разными объектами, и дополнительных теплообменников, установленных в индивидуальном тепловом пункте, откуда тепло поступает к конечному потребителю. Наличие теплообменной конструкции в данной схеме – возможность для владельца квартиры регулировать температурный режим в помещении. Он не будет потреблять излишки тепла, что приводит к значительной экономии ресурсов.

В системе горячего водоснабжения

Усиление мощности кожухотрубного теплообменника возможно лишь за счет большей ширины и длины змеевика, что сказывается отрицательно на размерах корпуса. Громоздкая конструкция занимает много места и неудобна в монтаже. Пластинчатый теплообменник, габариты которого в 3 раза меньше, позволяет получить аналогичную производительность.

В котельной

Обыденная практика – использование в котельных двух видов теплообменников. Это средство защиты от гидроударов, химических и механических примесей, перепада высот. Независимые контуры позволяют осуществлять автономный контроль и регулировку каждой конструкции. В таком случае продолжительность эксплуатации котлов значительно увеличивается, накипь на стенках прибора не скапливается.

Использование теплообменных устройств в промышленности

Теплообменники имеют разнообразное технологическое значение. Можно разделить все модели на две большие категории:

  • теплообменные устройства, в которых основной процесс – передача тепла;
  • теплообменные устройства, в которых охлаждение, конденсация, пастеризация и иные процессы – основные, а передача тепловой энергии выступает в качестве сопутствующего компонента.

По основному применению модели классифицируют на группы:

  • конденсаторы;
  • подогреватели;
  • холодильники;
  • испарители.

Их применение широко востребовано в разных отраслях промышленности. Внедрение в технологический процесс прибора позволяет значительно ускорить работу и увеличить эффективность.

Использование разного вида рабочих сред

Грамотно подобранный теплоноситель способен значительно повысить производительность работы.

Водяной пар

Одним из широко распространенных теплоносителей является перегретый (насыщенный) водяной пар. Он обладает рядом достоинств: высокая интенсивность теплоотдачи, легкое транспортирование по трубам, возможность регулировать температуру. Чаще всего данный вид теплоносителя применяют в технологических процессах с многократным испарением, когда выпариваемый продукт направляется в подогреватели или другие выпарные установки.

Горячая жидкость

Не менее распространены в качестве агентов, циркулирующих по теплообменнику – горячие жидкости и вода. Они отличаются менее интенсивным подогревом и стабильно снижающейся температурой носителя.

Для пара и воды характерен один значительный недостаток: с повышением температуры происходит резкий рост давления в системе. На пищевых производствах аппараты не могут работать при температуре выше 160°С.

Масляный раствор

Масляный обогрев целесообразен в консервной промышленности, он позволяет эксплуатировать теплообменник при 200°С.

Горячий воздух и газ

Газ и горячий воздух (максимальная температура 300-1000°С) используются в сушильных устройствах и печах. Газообразные вещества имеют много недостатков: их трудно транспортировать и контролировать по температурному параметру, они обладают низким коэффициентом теплообмена, а топочные газы сильно загрязняют поверхность теплообменника.

Выбор промышленного теплообменного оборудования

Для эффективного выполнения задач в промышленности теплообменник должен соответствовать требованиям технологического процесса:

  • возможность регулирования и поддержания температуры рабочей среды;
  • соответствие скорости циркуляции продукта необходимой минимальной продолжительности пребывания агента в системе;
  • устойчивость материала теплообменника к воздействию рабочей среды;
  • соответствие устройства давлению теплоносителя.

Второй важный критерий отбора – экономичность и производительность прибора, сочетание высокой интенсивности теплообмена с сохранением необходимых гидравлических показателей устройства.

Эксплуатация разных видов теплообменных устройств в промышленности

Применение теплообменников может быть построено по следующим направлениям:

  • использование остаточного тепла для генерации электрической энергии;
  • точная регулировка температуры во время химических процессов;
  • вторичное использование энергии для бытовых потребностей;
  • поддержание температуры в бытовых системах отопления в стандартизированных параметрах.

Исходя из поставленных задач, можно выбрать оптимальную модель прибора по мощности, конструкции и иным параметрам.

Пластинчатый теплообменный аппарат

Оборудование с пластинами может быть использовано в разных отраслях промышленности, в том числе пищевой. Его использование экономически целесообразно при пастеризации молока и сока, которое происходит в три шага. Подогретый на третьей стадии раствор используется как горячий теплоноситель для подогрева на двух остальных этапах. Это позволяет значительно экономить ресурсы.

Не менее распространены пластинчатые модели при обогреве паром с низким давлением. Данный прибор не пригоден для функционирования в условиях высокого давления из-за большой вероятности разгерметизации уплотнительных прокладок между пластинами.

Принципиальная схема пластинчатого теплообменного аппарата
1,3,5 – нечетные пластины; 2,4 – четные пластины; I – вход и выход первого теплоносителя; II – вход и выход второго теплоносителя

Труба в трубе

Оборудование, которое имеет небольшую площадь теплообмена и применяется только в установках малой мощности для передачи энергии в средах «газ-жидкость».

Схема теплообменного аппарата “труба в трубе”
1 – внутренняя труба; 2 – наружная труба; 3 – изогнутая соединительная труба; 4 – соединительные патрубки

Спиральные конструкции

Приборы применяются для взаимодействия рабочих сред «жидкость-жидкость». В качестве агента нередко выступает пар.

Основное назначение теплообменника: конденсаторы пониженного давления. Если теплоноситель имеет твердые частицы, волокна и иные примеси, прибор устанавливают в горизонтальном положении для предотвращения скапливания веществ в нижней части установки.

Схема спирального теплообменника

Элементные модели

Теплообменник представляет собой нескольких секций, объединенных в одну конструкцию. Его активно эксплуатируют, когда необходимо работать с высоким давлением, или теплоносители циркулируют с одинаковой скоростью без изменения агрегатного состояния.

Кожухотрубный аппарат

Установка, в которой теплоносители движутся по трубам и в межтрубном пространстве. Для увеличения скорости процесса предусмотрены решетки и перегородки. Область применения: промышленность и транспортная сфера для нагрева, охлаждения и конденсации газообразных и жидких сред.

Витые приборы

Установки участвуют в разделении газовых смесей путем глубокого охлаждения в приборах высокого давления. Один из главных недостатков конструкции – трансформация под действием температурного напряжения.

Схема витого теплообменника

Графитовые теплообменные установки

Это незаменимое оборудование на ряде предприятий. Материал устройства устойчив к коррозии и отличается высокой теплопроводностью.

Схема графитового теплообменника

Заключение

Использование теплообменников в быту и промышленности экономически обосновано из-за ряда преимуществ. Установки увеличивают скорость технологического процесса, повышают его эффективность и снижают расход ресурсов.

Подобрать конкретную модель теплообменного аппарата можно по данной ссылке: https://proteplo.org/raschet-teploobmennika.

Добавлено: 29.11.2018 15:47:38

Еще статьи в рубрике Вентиляция, кондиционирование, отопление:

  • Arbonia – производитель отопительных приборов

Говоря о тепле родного дома, люди не в последнюю очередь имеют в виду действительно комфортную температуру, характерную для любого жилья, где .

Что нужно знать о крышных котельных специалисту

После появления регулирующих технических документов крышные котельные уверенно зашагали по стране. Их используют, если есть проблемы с размещением отдельно стоящей или .

Промышленные ИК обогреватели и их ключевые положительные особенности

Промышленный обогрев обладает множеством отличительных особенностей в сопоставлении с бытовым. Прежде всего, важно принимать во внимание нестандартные габариты помещений (отопление складских .

    Классификация печей для бани. Какую выбрать?

    Хорошая печь для бани – это не только создание определенной температуры для парилки, подогрева воды для мытья, но и . .

    ООО «Тепло Сибири» предлагает пластинчатые теплообменники Funke для коммунальной и промышленной сферы

    «Тепло Сибири» предлагают обратить внимание на особую технологию с несимметричными каналами Off-set, которая позволяет снизить количество пластин в блоке при сохранении .

    Куда пристроить котёл?

    Даже подключаемые к коммуникациям стиральная и посудомоечная машины оставляют немало возможностей для выбора места – лишь бы можно было организовать подвод .

Ссылка на основную публикацию