Очистка и обеззараживание воды разными методами
Вода – это фактор, который напрямую влияет на качество жизни человека. От ее цвета и запаха зависит настроение человека утром после умывания, а от состава – самочувствие и здоровье организма.
Вода, являясь основой жизни, легко распространяет инфекционные заболевания. Чтобы предотвратить передачу болезнетворных микроорганизмов через питьевую воду, применяют обеззараживание и дезинфекцию жидкости. Эти процессы позволяют уничтожить грибки, бактерии, неприятный привкус и цвет, что обеспечивает безопасность питьевой воды.
Очистка и обеззараживание питьевой воды для подачи в жилые дома проводится на станциях водоподготовки централизованного водоснабжения. Также существуют методы и установки для локального использования – в виде небольших систем очистки воды из скважины или способов, позволяющих очищать воду, набранную в бутылку.
Классификация методов обеззараживания воды
Чтобы правильно выбрать способ обеззараживания, проводят анализ загрязненной воды. Исследуется количество и вид микроорганизмов, степень побочной загрязненности. Также определяется объем воды, которая будет проходить очистку, и экономический фактор.
Вода, прошедшая очистку, прозрачна и бесцветна, не пахнет и не имеет вкуса и привкуса. Чтобы добиться такого эффекта, применяют следующие группы методов:
Каждой группе присущи свои отличительные признаки, но все методы так или иначе позволяют удалить патогенные микроорганизмы из воды. Получить подробную информацию по оборудованию для очистки и обеззараживания воды можно в компании «КВАНТА+» в г. Тюмень.
Химический метод – это работа с реагентами, добавляемыми в воду. Физическое обеззараживание выполняется за счет температуры или различных излучений. Комбинированные методы сочетают работу этих двух групп.
Наиболее эффективные способы
Инфекционная безопасность воды – это важная и актуальная проблема, из-за чего изобретено множество методик для избавления воды от микроорганизмов. Способы дезинфекции не прекращают улучшаться. Они становятся более результативными и доступными. В наше время самыми лучшими считаются следующие методы:
- термообработка с помощью высоких температур;
- озонирование;
- ультразвуковая обработка;
- реагентные методы;
- ультрафиолетовое облучение жидкости;
- высокомощные электрических разрядов.
Физические методы обеззараживания воды
Перед ними вода обязательно должна проходить очистку от взвесей и примесей. Для этого применяется коагуляция, сорбция, флотация и фильтрация.
К данному виду методов относится применение:
- ультразвука;
- ультрафиолета;
- высоких температур;
- электричества.
Обеззараживание ультрафиолетом
Дезинфицирующее действие ультрафиолетового излучения известно очень давно. Его работа сходна с солнечным светом, успешно уничтожающим неприспособленные микроорганизмы за пределами озонового слоя Земли. Ультрафиолет воздействует на клетки, создавая поперечные сшивки в ДНК, вследствие чего клетка теряет возможность делиться и погибает (Рис. 2).
Установка состоит из ламп, помещенных в кварцевые чехлы. Лампы производят изучение, мгновенно уничтожающее микроорганизмы, а чехлы не позволяют лампам остывать. Качество обеззараживания при использовании этого метода зависит от прозрачности воды: чем чище поступающая жидкость, тем дальше распространяется свет и тем меньше загрязняется лампа. Для этого перед обеззараживанием вода проходит другие стадии очистки, в том числе механические фильтры.Резервуар, через который протекает вода, обычно оборудован мешалкой. Перемешивание слоев жидкости позволяет процессу дезинфекции проходить более равномерно.
Конструкция установки УФ-обеззараживания
Важно знать, что лампы и чехлы требуют регулярного ухода: конструкцию необходимо разбирать и очищать не менее одного раза в квартал.
Тогда результативность процесса не будет ухудшаться из-за появления накипи и других загрязнений. Сами лампы подлежат замене раз в год.
Установки ультразвукового обеззараживания
Работа таких установок основана на кавитации. Из-за интенсивных колебаний, которым подвергается вода благодаря высокочастотному звуку, в жидкости образуются многочисленные пустоты, она будто «вскипает». Мгновенный перепад давлений приводит к разрыву клеточных оболочек и гибели микроорганизмов.
Оборудование для ультразвуковой обработки воды эффективно, но требует больших затрат и грамотной эксплуатации. Важно, чтобы персонал умел обращаться с устройством – от качества настройки оборудования зависит его результативность.
Термическое обеззараживание
Этот метод крайне распространен среди населения и активно применяется в быту. С помощью высокой температуры, то есть кипячения, вода очищается практически от всех возможных патогенных организмов. В дополнение к этому снижается жесткость воды и уменьшается содержание растворенных газов. Вкусовые качества воды остаются прежними. Однако, у кипячения есть один недостаток: вода считается безопасной около суток, после чего бактерии и вирусы вновь могут в ней обосноваться.
Кипячение воды – надежный и простой метод обеззараживания
Электроимпульсное обеззараживание
Методика заключается в следующем: электрические разряды, поступающие в воду, создают ударную волну, микроорганизмы попадают под гидравлический удар и погибают. Этот способ не требует предварительной очистки и эффективен даже при повышенной мутности. Гибнут не только вегетативные, но и спорообразующие бактерии. Преимуществом является длительное сохранение эффекта (вплоть до 4-х месяцев), а недостатком – немалая стоимость и большое энергопотребление.
Химические методы обеззараживания воды
Они основаны на химических реакциях, которые происходят между загрязнением или микроорганизмом и добавляемым в жидкость реагентом.
При химическом обеззараживании важно контролировать дозу реагента.
Она должна быть точной. Недостаток вещества не сможет исполнить свою цель. К тому же, небольшое количество реагента приведет к повышенной активности вирусов и бактерий.
Чтобы улучшить работу химиката, его добавляют с избытком. В таком случае вредоносные микроорганизмы погибают, а эффект сохраняется продолжительное время. Избыток рассчитывается отдельно: если добавить слишком много, реагент дойдет до потребителя, и он отравится.
Хлорирование
Хлор широко распространен и применяется в водоочистке многих стран мира. Он успешно справляется с любыми объемами микробиологических загрязнений. Хлорирование приводит к гибели большей части патогенных организмов и отличается дешевизной и доступностью. К тому же, использование хлора и его соединений позволяет извлекать из воды металлы и сероводород. Хлорирование применяется в городских системах подачи питьевой воды. Оно также используется в бассейнах, где скапливается большое число людей.
Однако, у этого способа есть ряд недостатков. Хлор крайне опасен, вызывает рак и клеточные мутации, токсичен. Если избыток хлора не исчезнет в трубопроводе, а дойдет до населения, это может привести к серьезным проблемам со здоровьем. Особенно сильна опасность в переходные периоды (осень и весну), когда из-за увеличения загрязненности поверхностных вод повышают дозу реагента при водоподготовке. Кипячение такой воды не поможет избежать негативных последствий, а наоборот – хлор превратится в диоксин, являющийся сильнейшим ядом. Для того, чтобы дать излишку хлора испариться, воду из-под крана набирают в большие емкости и оставляют на сутки в хорошо проветриваемом помещении.
Озонирование
Озон обладает сильным окисляющим воздействием. Он проникает внутрь клетки и разрушает ее стенки, приводя к гибели бактерии. Это вещество не только является сильным антисептиком, но также обесцвечивает и дезодорирует воду, окисляет металлы. Озон работает быстро и избавляется практически от всех микроорганизмов, находящихся в воде, обгоняя по этой характеристике хлор.
Озонирование считается наиболее безопасным и эффективным методом, но и оно имеет несколько минусов. Избыток озона приводит к коррозии металлических частей оборудования и трубопроводов, аппараты изнашиваются и разрушаются быстрее обычного. Кроме того, новейшие исследования отмечают, что озонирование вызывает «пробуждение» микроорганизмов, находившихся в условной спячке.
Схема процесса озонирования
Способ отличается дороговизной установки и большим энергопотреблением. Для работы с озонирующим оборудованием требуется персонал высокой квалификации, ведь газ токсичен и взрывоопасен. Чтобы пустить воду населению, необходимо переждать период распада озона, иначе могут пострадать люди.
Обеззараживание полимерными соединениями
Отсутствие вреда здоровью, уничтожение запахов, вкусов и цветности, большая длительность действия – перечисленные достоинства относятся к обеззараживанию с помощью полимерных реагентов. Такой вид веществ также называют полимерными антисептиками. Они не вызывают коррозию и не портят ткань, не вызывают аллергии и отличаются результативностью.
Олигодинамия
Она основана на способности благородных металлов (таких как золото, серебро и медь) обеззараживать воду.
То, что эти металлы имеют антисептический эффект, известно давно. Медь и её сплавы часто применяют в полевых условиях, когда нужно в индивидуальном порядке обеззаразить небольшой объем жидкости.
Для более обширного воздействия металлов на микроорганизмы используются ионаторы. Это проточные аппараты, работающие на основе гальванической пары и электрофореза.
Обеззараживание серебром
Этот металл принято считать одним из самых древних способов обеззараживания воды. В древности было распространено мнение, что серебро лечит от любых болезней. Сейчас известно, что оно негативно влияет на множество микроорганизмов, однако неизвестно, уничтожает ли серебро простейшие бактерии.
Данное средство дает видимый эффект при очистке воды. Однако оно негативно влияет на организм человека при накоплении в нем. Не зря серебро имеет высокий класс опасности. Обеззараживание воды ионами серебра не считается безопасным методом, а потому практически не используется в промышленности. Серебряные ионаторы используются в единичных случаях в быту для обработки небольших объемов воды.
Компактный бытовой ионатор (осеребритель) воды
Иодирование и бромирование
Йод широко известен и используется в медицине с давних времен. Ученые многократно пытались использовать его обеззараживающее воздействие в водоочистке, однако его применение приводит к возникновению неприятного запаха. Бром отлично справляется практически со всеми известными патогенными микроорганизмами. Но имеет существенный недостаток – высокую стоимость. Из-за своих минусов эти два вещества для обработки сточных и питьевых вод не используются.
Комбинированные методы обеззараживания воды
Комплексные методы основываются на сочетании физических и химических методов для улучшения результативности. Примером является комбинация из ультрафиолетового излучения и хлорирования (иногда хлорирование заменяется на озонирование). УФ-лампы уничтожают микроорганизмы, а хлор или озон предотвращают их повторное возникновение. Кроме того, хорошо сочетаются окисление и обработка тяжелыми металлами. Реагент-окислитель дезинфицирует, а металлы продлевают бактерицидное действие.
Сочетание УФ-обеззараживания и действия ультразвука
Как обеззаразить воду в быту
Существует пять способов быстро продезинфицировать небольшой объем воды:
- кипячение;
- добавление перманганата калия;
- использование обеззараживающих таблеток;
- использование трав и цветов;
- настаивание с кремнием.
Перманганат калия прибавляется воду в количестве 1-2 г. на одно ведро воды, после чего загрязнения выпадают в осадок.
Специальные таблетки для уничтожения микроорганизмов применяются при обезвреживании воды из скважины, колодца или родника. Они являются наиболее современным способом, доступным, недорогим и результативным. Многие таблетки, например, марки «Акватабс», могут использоваться для очистки больших объемов жидкости.
Если воду необходимо обеззаразить в походе, можно воспользоваться специальными травами: зверобоем, брусникой, ромашкой или чистотелом.
Также можно использовать кремний: его помещают в воду и оставляют на сутки.
Нормативная документация в области безопасности питьевой воды
Со стороны государства качество воды строго контролируется с помощью нормативных документов, правил и ограничений. Основой законодательных актов в области охраны водных ресурсов и контроля качества используемой воды являются два документа: Федеральный закон «О санитарно-эпидемиологическом благополучии населения» и Водный кодекс.
Первый закон содержит требования к качеству источников водоснабжения, из которых вода поступает в жилые дома и на нужды сельского хозяйства. Второй документ описывает нормы использования водных источников и указания по обеспечению их безопасности, а также определяет меры наказания.
ГОСТы
ГОСТы описывают правила, по которым должен проходить контроль качества сточных и питьевых вод. В них содержатся методики проведения анализов в полевых условиях, а также позволяют разделить воды на группы. Самые важные из ГОСТов представлены в таблице.
СНиПы
Строительные нормы и правила определяют требования к возведению сооружений очистки вод, к монтажу различных видов трубопроводов и систем водоснабжения. Информация содержится в СНиПах под следующими номерами: СНиП 2.04.01-85, СНиП 3.05.01-85, СНиП 3.05.04-85.
СанПиНы
Санитарно-эпидемиологические правила и нормы содержат гигиенические требования к качеству различных групп вод, к составу, к водозаборным сооружениям и месторасположению водозаборов: СанПиН 2.1.4.559-96, СанПиН 4630-88, СанПиН 2.1.4.544-96, СанПиН 2.2.1/2.1.1.984-00.
Таким образом, эффективность обеззараживания водопроводной воды контролируется с установленной регулярностью и в соответствии со множеством правил и нормативов. А большое число различных методов дезинфекции свежей воды позволяют для любых условий подобрать оптимальный вариант. Что делает грамотно очищенную и обработанную воду безопасной для употребления людьми.
Методы обеззараживания питьевой воды
Реагентные (химические) методы обеззараживания питьевой воды:
- 1. Хлорирование
- 2. Озонирование
- 3. Применение тяжелых металлов
Физические методы обеззараживания питьевой воды:
- 1. Кипячение
- 2. Ультрафиолетовое излучение
- 3. Обеззараживание ультразвуком
- 4. Радиационное обеззараживание
- 5. Обеззараживание с помощью ионообменных смол
Хлорирование. Часто встречающийся и проверенный метод дезинфекции воды – первичное хлорирование. Именно этим методом на сегодняшний день обеззараживается 98,6 % воды. Первопричина успеха данного метода объясняется повышенной эффективностью обеззараживания воды и экономичности научно-технического процесса по сравнению с иными методами. Метод хлорирования не только очищает воду от ненужных органических и биологических примесей, но и благополучно удаляет соли железа и марганца, также преимущество этого метода заключается в том, что данный метод сохраняет способность обеспечить микробиологическую защищенность воды при ее транспортировании за счет эффекта последействия.?Имеются и недостатки данного метода. Например после хлорирования в воде наблюдается наличие свободного хлора. Данный процесс занимает по времени до нескольких десятков часов.Для уничтожения примесей потребуется доочистка воды на угольных фильтрах. ?Для хлорирования воды применяются препараты: как непосредственно хлор (водянистый либо газообразный), диоксид хлора и прочие хлорсодержащие препараты.
Озонирование. Превосходство озона (О3) перед иными дезинфектантами содержится в свойственных ему дезинфицирующих и окислительных свойствах, обусловленных выделением при контакте с органическими объектами энергичного атомарного воздуха, рушащего ферментные системы микробных клеток и окисляющего какие-либо соединения, которые дают воде досадный аромат. Помимо неповторимой возможности ликвидирования микробов, озон владеет высочайшей отдачей в ликвидировании спор, цист и множества иных патогенных бактерий. Численность озона, важное для обеззараживания питьевой воды, находится в зависимости от ступени засорения воды и составляет 1-6 мг/литр. при контакте в 8-15 мин; остаточного озона должно быть менее 0,3-0,5 мг/литр. С гигиенической стороны метод озонирование воды – лучший из методов обеззараживания питьевой воды.
Причинами медленного распространения технологии озонирования считаются большая цена оборудования, большой расход электричества, высокие производственные затраты, а также потребность высококвалифицированного оборудования. Также, в ходе эксплуатации установлено, что в разных температурных режимах, например, если температура обрабатываемой естественной воды выше 22 °С) процесс озонирования не может достичь необходимых микробиологических показателей из-за недоступности результата дезинфицирующего действия?Способ озонирования воды технически трудоемок и наиболее дорогой, в отличии от иных способов обеззараживания питьевой воды. Это все ограничивает внедрение этого способа в ежедневной жизни.?Иным значимым изъяном озонирования явялется токсичность озона.
Применение тяжелых металлов. Использование тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды базируется на применении их «олигодинамического» качества -возможности оказывать антибактериальное действие в небольших концентрациях. Данные сплавы могут вводиться в виде растворов солей или способом химического растворения. У обоих способов вероятен косвенный контроль их содержания в воде. Также к методам обеззараживания питьевой воды относится обширно применявшийся способ в начале прошлого века — обеззараживание соединениями брома и йода, кстати этот способ более эффективен в отличие от хлора и обладает лучшими антибактериальными качествами, чем хлор, хотя технология более трудоемкая. В современной практике для обеззараживания питьевой воды йодированием обычно применяется специализированные иониты, обогащенные йодом. При пропускании воды через иониты, йод понемногу вымывается из ионита, обеспечивая требуемую дозу в воде. Это решение приемлемо для компактных персональных установок. Минусом данного метода считается перемена сосредоточения йода в период работы и отсутствия полного контролирования его сосредоточения.?
Кипячение. Из физических методов обеззараживания воды самым популярным и верным считается кипячение.?При кипячении уничтожаются большинство бактерий, микробов, бактериофагов, вирусов, антибиотиков и остальные биологические объекты, которые находятся в открытых водоисточниках и как следствие в системах центрального водоснабжения. Также, при кипячении воды удаляются растворенные газы и вода становится более мягкой. Вкусовые свойства воды при кипячении изменяются мало. Для хорошей дезинфекции рекомендуется прокипятить воду на протяжении 15 — 20 мин., так как при недолгом кипячении мельчайшие организмы все-таки имеют шансы сохранить жизнеспособность. Но использование кипячения в промышленных масштабах, не осуществимо ввиду высокой стоимости процесса.
Ультрафиолетовое излучение. УФ-излучение- многообещающий промышленный метод дезинфекции воды. Дезинфицирующие свойства данного света обусловлены особым воздействием на клеточный обмен, а также на ферментные системы бактериальной клетки. В итоге антибактериальный свет истребляет вегетативные и споровые формы микробов. Сами установки представлят собой камеры сделанные из нержавеющей стали с размещенными внутри Ультрафиолетовыми-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, постоянно подвергается ультрафиолетовому облучению, который убивает все оказавшиеся в ней мельчайшие организмы.
При УФ-облучении не образуются вторичные токсины, и потому верхнего порога дозы ультрафиолетового облучения не существует. Повышением дозы УФ-облучения практически всегда можно достичь желаемого уровня обеззараживания.
Также УФ-облучение не ухудшает органолептические качества воды, в следствии этого данный метод может быть отнесен к экологически чистым способам обработки воды.?Но даже у этого метода имеются недостатки. УФ-обработка не обеспечивает пролонгированного действия в отличие от метода озонирования.
Для персонального водоснабжения УФ-установки считаются более перспективными.?Также при УФ-излучении, возможна реактивация микроорганизмов и даже выработка новых штаммов, стойких к лучевому поражению. Организация процесса УФ обеззараживания требует больших инвестиций, чем у метода хлорирования, но меньших, чем у озонирования. Невысокие эксплуатационные затраты делают УФ-обеззараживание и хлорирование сравнимо недорогими способами очистки воды. Расход электричества незначителен, а цена ежегодной замены ламп составляют максимум 10% от стоимости установки.
Обеззараживание ультразвуком. В данном способе обеззараживания воды употребляется ультразвук. Механизм действия ультразвука до конца пока еще не изучен. Есть некие предположения: ультразвук вызывает образование пустот, это и приводит к разрыву клеточных стенок бактерий;? ультразвук вызывает выделение растворенного в воде газа, а пузырьки от газа, оказавшиеся в бактериальной клетке, вызывают разрыв клетки.?Превосходством применения ультразвука перед остальными методами обеззараживания сточных вод является его нечувствительность к таким моментам, как высокая мутность и цветность воды, количество микроорганизмов и присутствие в воде растворенных веществ.?Единственный момент, который оказывает большое влияние на обеззараживание сточных вод ультразвуком является – интенсивность ультразвуковых колебаний. Бактерицидное влияние ультразвука различной частоты очень существенно и зависит от интенсивности звуковых колебаний.
Обеззараживание и очищение воды ультразвуком считается одним из самых современных способов дезинфекции. Ультразвуковое воздействие не часто используется в фильтрах обеззараживания питьевой воды, однако эффективность данного метода говорит о перспективности метода обеззараживания воды ультразвуком, даже несмотря на его дороговизну.
Радиационное излучение. Есть предложения применения для обеззараживания воды гамма-излучений.?Гамма-установки действуют следующим способом: при поступлении воды в полость сетчатого цилиндра приёмно-разделительного агрегата, твёрдые включения переходят вверх шнеком, далее отжимаются в диффузоре и следуют в бункер – сборник. Потом вода разбавляется чистой водой до определённой концентрации и подается в агрегат гамма-установки, в нем под действием гамма излучения изотопа Со60 и начинает происходить сам процесс обеззараживания. Гамма-излучение угнетающе действует на активность микробных ферментов. При больших порциях гамма-излучения гибнет большинство возбудителей таких опасных болезней как полиомиелит, тиф и прочее.
Методы обеззараживание воды
Обеззараживание (дезинфекция) питьевой воды осуществляется с целью обеспечения эпидемической безопасности питьевой и предотвращения передачи через воду возбудителей инфекционных заболеваний. Обеззараживание направлено на уничтожение патогенных и условно-патогенных микроорганизмов. В целях обеззараживания применяют реагентные (химические) и безреагентные (физические) методы.
Реагентные методы основаны на использовании сильных окислителей (хлора, хлорсодержащих веществ, озона), ионов серебра и других веществ.
К безреагентным методам относятся: ультрафиолетовое облучение, воздействие ультразвука, вакуума, радиоактивное излучение то есть физические методы, а также термическая обработка. На водопроводах обычно обеззараживание воды осуществляется на последнем этапе ее очистки перед поступлением в резервуары чистой воды и разводящую водопроводную сеть. Выбор конкретного метода обеззараживания зависит от качества и количества исходной воды, методов ее предварительной очистки, условий поставки реагентов и других факторов.
Хлорирование — обработка питьевой воды водным раствором хлора с целью ее обеззараживания. Этот метод стал наиболее широко распространен среди всех методов обеззараживания воды. Это связано с относительной дешевизной хлора, несложностью используемого оборудования и надежностью обеззараживающего действия.
При обычных температуре и давлении хлор — газ желто-зеленого цвета с резким специфическим запахом. Раздражает слизистые оболочки, глаза, относится к сильнодействующим ядовитым веществам (СДЯВ) и при выбросе в воздух способен вызвать отравления людей.
Хлор можно использовать для обеззараживания воды на различных сооружениях — от шахтного колодца до крупного водопровода. В целях обеззараживания воды могут применяться газообразный хлор (доставляется в баллонах в жидком состоянии), хлорная известь, гипохлорит кальция, хлорамины, двуокись хлора и другие хлорсодержащие вещества.
Основными условиями действия хлора являются: тщательное освобождение воды от взвешенных веществ, достаточная доза хлора, полное и быстрое перемешивание хлора со всем объемом обеззараживаемой воды и контакт хлора с водой не менее 30-60 мин времени, необходимого для проявления бактерицидного действия. Для обеспечения надежного обеззараживания необходимо ввести его такое количество, чтобы покрыть всю хлорпоглощаемость воды и получить некоторый избыток свободного активного хлора. Об успешности хлорирования воды судят по остаточному активному хлору. Установлено, что дозы хлора в воде 1-3 мг/л обычно обеспечивают достаточный бактерицидный эффект. При этом содержание остаточного свободного хлора в воде после резервуаров чистой воды должно быть в пределах 0,3-0,5 мг/л. Такое хлорирование называется обычным, или хлорированием с учетом хлорпотребности.
Хлорпоглощаемость воды – количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 минут.
Хлорпотребностъ воды – общее количество хлора, необходимое для удовлетворения хлорпоглощаемости воды и обеспечения наличия необходимого количества остаточного хлора.
Разновидностью хлорирования на водопроводах являются двойное хлорирование и суперхлорирование (перехлорирование).
При двойном хлорировании хлор вводится в воду дважды: первый раз в смеситель перед отстойниками и второй — после фильтров, применяется, например, в случае использования для питьевого водоснабжения речной воды с высокой бактериальной загрязненностью.
Суперхлорирование — хлорирование воды избыточными дозами хлора (5-20 мг/л) при остаточном содержании активно: до 1-5 мг/л. Применяется временно при резких колебаниях бактериальной загрязненности воды, в случае особой эпидемической обстановки и при невозможности обеспечить достаточный контакт воды с хлором.
При наличии высокого содержания остаточного хлора вода считается непригодной непосредственно для употребления и требует последующего дехлорирования ее химическим веществами (гипосульфит или сернистый газ) или сорбционным методом (активированный уголь).
Одним из способов обеззараживания воды является аммонизация (хлорирование с преаммонизацией), при которой в воду последовательно вводят сначала аммиак, а затем хлор. Хлорирование с преаммонизациеи используют с целью предотвращения появления специфических запахов в случае хлорирования воды, содержащей фенол или бензол, а также для пресечения образования канцерогенных веществ (хлороформ и др.) во время хлорирования воды при наличии в ней гуминовых и других веществ.
Несмотря на положительные стороны применения хлора для обеззараживания питьевой воды, в последние годы выявлены и отрицательные последствия хлорирования воды для здоровья населения.
В результате реакции хлора с находящимися в воде гуминовыми соединениями, продуктами жизнедеятельности некоторых организмов и веществами техногенного происхождения в воде могут образовываться высокотоксичные, канцерогенные и мутагенные вещества. К ним относятся: тригалометаны (ТГМ), в том числе хлороформ, бромоформ, дибромхлорметан и другие.
Необходимо учитывать, что некоторые из образующихся в воде вредных веществ поступают в организм не только в процессе употребления воды и пищевых продуктов (энтерально), но и через неповрежденную кожу во время принятия душа, ванны, плавания в бассейне. Поэтому важным направлением в решении назревшей проблемы является применение других, альтернативных хлорированию, способов обеззараживания питьевой воды.
Озонирование — обработка воды озоном для уничтожения микроорганизмов и устранения неприятных запахов.
Озон (O3) — газ голубоватого цвета со специфическим запахом, очень хорошо растворим в воде. Обладает высокой окислительной способностью, которая обуславливает его бактерицидность. Действует на протоплазму микроорганизмов, уничтожает вирусы (в частности, полиомиелита).
Озонатор – аппарат (генератор) для получения озона, используемого с целью обеззараживания воды
Озонирование по сравнению с хлорированием имеет следующие основные преимущества:
надежное обеззараживание достигается в течение нескольких минут, при этом озон эффективнее хлора обеззараживает воду от споровых форм бактерий и возбудителей вирусных инфекций;
озон, а также продукты его соединения с веществами, находящимися в воде, не имеют вкуса и запаха;
происходит обесцвечивание воды и устранение ранее имевшихся запахов различного происхождения;
избыточный озон через несколько минут превращается в кислород, выделяющийся в атмосферный воздух, и поэтому не оказывает влияния на организм человека;
при этом значительно меньше, чем при хлорировании образуется новых токсических веществ;
процесс озонирования в меньшей степени, чем хлорирование зависит от рН, мутности, температуры и других свойств воды;
производство озона на месте избавляет от необходимости доставки и хранения реагентов.
Недостатки озонирования. Озон является взрывоопасным и токсичным реагентом, это более дорогой способ по сравнению с хлорированием. Быстрое разложение в отработанной воде (за 20-30 минут) ограничивает его применение, после озонирования нередко наблюдается значительный рост микрофлоры вследствие реактивации бактерий и вторичного загрязнения. Даже высокие дозы озона (20 мг/л) и длительная экспозиция (1,5-2 часа) не обеспечивают полностью эффективное обеззараживание в отношении бактериальных спор. При обработке воды озоном могут образовываться побочные токсичные продукты: броматы, альдегиды, кетоны, карбоновые кислоты и др. соединения. Эти продукты могут вызывать мутагенный и другие неблагоприятные эффекты.
Обеззараживание воды ионами серебра основано на олигодинамическом действии этого металла. Серебро обладает свойством консервировать воду на длительное время. Согласно опубликованным данным, вода, обработанная серебром в концентрации 0,1 мг/л, сохраняет высокие санитарно-гигиенические показатели в течение года и более.
Обеззараживание серебром осуществляется непосредственно путем обеспечения контакта воды с поверхностью металла или в результате растворения солей серебра в воде электролитическим способом. Во втором случае используются ионаторы, обеспечивающие растворение серебра под действием постоянного электрического тока.
Ионаторы используют для обеззараживания воды на крупных судах. Высокую оценку воде, обработанной серебром, дали космонавты. Практика показала, что обработка бортовых запасов питьевой воды серебром обеспечивает сохранность ее органолептических и гигиенических свойств в условиях космических полетов различной продолжительности. Серебро оказалось также прекрасным консервантом минеральной воды. Поэтому на престижных предприятиях по производству безалкогольных напитков минеральную воду обеззараживают серебром.
Однако несмотря на богатую информацию об антимикробных свойствах серебра, широкое его внедрение в практику водоснабжения сдерживалось по различным причинам, в том числе недостаточными сведениями о его токсичности.
Ультрафиолетовое облучение. Бактерицидное действие ультрафиолетовых (УФ) лучей, широко известно и неоднократно доказано в экспериментах. УФ лучи проникают через 25 см слой прозрачной и бесцветной воды. Под воздействием УФ излучения в клетках находящихся в воде микроорганизмов происходят необратимые процессы, вызывающие нарушение молекулярных и межмолекулярных связей. Это приводит к денатурации (разрушению) белков клеток протоплазмы, в частности, к повреждению ДНК, РНК, клеточных мембран, и как следствие, к гибели микроорганизмов. Образующиеся под воздействием УФ излучения короткоживущие молекулы озона, атомарный кислород, свободные радикалы и гидроксильные группы дополнительно воздействуют на находящиеся в воде микроорганизмы.
Метод УФ обеззараживания не изменяет химического состава и органолептических качеств воды. Достоинством метода является также быстрота обеззараживания (несколько секунд) и отсутствие запаха и привкуса при использовании ультрафиолетовых лучей. Лучи пагубно воздействуют не только на вегетативные формы патогенных бактерий, которые погибают после облучения в течение 1-2 мин, но также на устойчивые к хлору споры, вирусы и яйца гельминтов. Многочисленные исследования показали отсутствие вредных эффектов даже при дозах УФ облучения, намного и превышающих практически необходимые. Следовательно, в отличие от технологии хлорирования и озонирования, принципиально отсутствует опасность передозировки УФ облучения. В то же время имеются сведения о том, что если доза УФ излучения выбрана правильно, активация микроорганизмов не наблюдается, что позволяет применять УФ обеззараживание без последующего ввода консервирующих доз хлора.
Технология обеззараживания воды УФ облучением является наиболее простой в реализации и обслуживании. Для обеззараживания воды УФ облучением характерны незначительные затраты электроэнергии (в 3-5 ниже, чем при озонировании) и отсутствие потребности в дорогостоящих реактивах.
Для обеззараживания воды применяют установки с ртутно-кварцевыми лампами высокого давления и аргоно-ртутные лампы низкого давления. Лампы помещаются над потоком облучаемой воды или в самой воде. В первом случае они снабжены отражателем для направленного облучения, во втором лучи распространяются по окружности во все стороны.
Установка УФ обеззараживания питьевой воды
Несмотря на многие положительные стороны использования ультрафиолетового облучения для обеззараживания питьевой воды, необходимо учитывать, что повышенные мутность, цветность и соли железа уменьшают проницаемость воды для бактерицидных УФ лучей. Поэтому для обеззараживания УФ облучением в большей степени пригодны воды из подземных источников с содержанием железа не более 0,3 мг/л, невысокими мутностью и цветностью. При необходимости УФ обеззараживания воды из поверхностных и некоторых подземных источников требуется ее предварительная очистка (осветление, обесцвечивание, обезжелезивание и др.).
Обеззараживание воды ультразвуком. Бактерицидное действие ультразвука объясняется, в основном, механическим разрушением клеточной оболочки бактерий в ультразвуковом поле. При этом бактерицидный эффект связан с интенсивностью ультразвуковых колебаний и не зависит от мутности (до 50 мг/л) и цветности. Эффект обеззараживания распространяется не только на вегетативные, но и на споровые формы микроорганизмов.
Для получения необходимых для обеззараживания воды ультразвуковых колебаний используют пьезоэлектрические и магнитнострикционные устройства. Продолжительность обеззараживающего действия ультразвука длится секунды.
Обеззараживание воды вакуумом предусматривает обеззараживание бактерий и вирусов пониженным давлением. При этом полный бактерицидный эффект может быть достигнут за 15-20 мин.
Радиационное обеззараживание воды. Ионизирующим (проникающим) излучением называется коротковолновое рентгеновское и γ-излучение, поток высокоэнергетических заряженных частиц (электроны, протоны, дейтроны, α-частицы и ядра отдачи), а также быстрых нейтронов (частицы, не имеющие зарядов). Взаимодействуя с электронными оболочками атомов и молекул среды, они передают им часть своей энергии, производя ионизацию молекул. Освободившиеся при этом электроны, как правило, обладают значительной энергией, которая расходуется на ионизацию еще нескольких молекул воды.
Ионизирующее излучение является мощным безреагентным фактором, действие которого приводит к гибели имеющихся в облучаемой воде болезнетворных микроорганизмов и ее обеззараживание. Первичные продукты радиолиза воды нарушают обмен веществ в бактериальной клетке.
Радиационная очистка и обеззараживание воды имеют следующие преимущества по сравнению с традиционными методами обработки:
универсальность, то есть возможность обезвреживать многие органические и любые микробные загрязнители;
высокую степень обеззараживания и очистки;
высокую скорость обработки и возможность полной автоматизации.
Однако учитывая загрязнение водных объектов специфическими техногенными веществами и по другим причинам, практическое распространение получают комбинированные методы, когда радиационная обработка воды используется совместно с традиционными методами обеззараживания (хлорированием или озонированием).
Термическое обеззараживание воды применяется в основном для обеззараживания небольшого количества воды в детских учреждениях (школах, дошкольных учреждениях, пионерских и летних лагерях), санаториях, больницах, на судах, а также в домашних условиях.
Установлено, что полное обеззараживание моды (уничтожение всех видов и форм болезнетворных микроорганизмов) достигается только в результате кипячения воды в течение 5-10 минут. Однако нужно учитывать, что кипяченая вода лишена не только болезнетворных, но и сапрофитных, безвредных или даже полезных для человека микроорганизмов. В такой воде легко размножаются попавшие в нее уже после кипячения и охлаждения микроорганизмы, что приводит к быстрому ухудшению ее качества. Поэтому кипяченую воду следует сохранять в плотно закрытых емкостях в прохладном месте не более 24 часов.
Обеззараживание воды
Вода, хоть и не отличается каким-либо выраженным вкусом или запахом, является неотъемлемой частью нашей жизни. Если человек не будет получать достаточное количество жидкости, они может погибнуть от обезвоживания. К сожалению, качество питьевой воды на природе или в водопроводе оставляет желать лучшего, поэтому люди придумали действенные методы ее обеззараживания.
В этой статье мы рассмотрим, какие методы обеззараживания питьевой воды существуют, и как их правильно использовать в домашних условиях и на природе.
Необходимость обеззараживания воды
Времена, когда можно было спокойно напиться из лесного ручья, давно прошли. Стремительное развитие технологий и промышленности, к сожалению, привели к тому, что практически все источники пресной воды заражены теми или иными микроорганизмами, имеют неприятный осадок или загрязнены химическими соединениями (рисунок 1).
Рисунок 1. Очистка питьевых и сточных вод помогает уничтожить патогенные микроорганизмы
Пить необработанную воду небезопасно, поэтому для защиты своей жизни и здоровья лучше использовать проверенные методики обеззараживания воды. Большинство из них применяются в промышленности для очистки промышленных и бытовых сточных воды, но некоторые из самых современных систем и технологий обеззараживания подходят и для домашнего использования.
Нормативная документация
Если вас интересует, как правильно обеззаразить воду, в первую очередь вам следует знать, что ее качество регулируется четкими законодательными нормами и нормативными документами.
Для оценки качества питьевой воды используются и такие нормативные документы:
- ГОСТы: включают в себя правила, по которым проводится контроль качества сточных и питьевых вод, а также методики осуществления анализов в полевых условиях.
- СНиПы: эти строительные нормы и правила определяют требования к возведению очистных сооружений, систем водоснабжения и монтажа водопроводных труб.
- СанПиНы: свод санитарно-гигиенических правил, определяющих требования к питьевой воде и ее разделению на группы по составу.
Можно сделать вывод, что качество питьевой воды контролируется регулярно и подлежит регулированию соответствующими нормативными документами.
Основные методы обеззараживания
Способов эффективного обеззараживания воды существует достаточно много, хотя в целом их можно разделить на физические, химические и комбинированные.
Каждый из подобных методов обеззараживания питьевых и сточных вод имеет свои особенности и характеристики, и направлен на улучшение определенных показателей. Чтобы узнать эти нюансы, стоит рассмотреть каждый из этих способов более детально.
С помощью ультрафиолета
Обеззараживание воды ультрафиолетом используется уже достаточно давно, так как дезинфицирующие свойства такого облучения получили научное подтверждение, а УФ оборудование считается лучшим для улучшения качества питьевой воды (рисунок 2).
Установка для обеззараживания воды ультрафиолетовым облучением состоит из специальных ламп, помещенных в кварцевые чехлы. Лампы производят излучение, уничтожающее болезнетворные микроорганизмы, а чехлы не дают установкам остывать. В результате ликвидация микробов происходит непрерывно.
Рисунок 2. Установка для очистки ультрафиолетом
Многое зависит и от качества поступающей жидкости: чем прозрачнее вода, тем дальше распространяется излучение, и тем более эффективной будет работа установки. При этом, установку нужно разбирать и очищать минимум раз в три месяца, а если она используется для очистки сильно загрязненной воды, то даже чаще.
Хлорирование
Очистка питьевой воды с помощью хлора получила широкое распространение в нашей стране, хотя активно применяется и по всему миру. Как химический элемент, хлор способен устранить любые болезнетворные микробы, вступая в реакцию с загрязненной водой (рисунок 3).
Рисунок 3. Хлорирование – устаревший, но эффективный метод очистки
Основное преимущество такого химического метода обеззараживания состоит в том, что он обладает выраженной эффективностью, но при этом отличается финансовой доступностью. Кроме того, данный метод используется для устранения из воды сероводорода и вредных металлов.
При всей своей эффективности, метод перехлорирования нельзя назвать идеальным. Для него характерны и определенные недостатки: сам по себе хлор является токсичным элементом, может вызывать рак и клеточные мутации. Также следует учитывать, что известковая обработка хлорной известью должна проводится в строгом соответствии с нормами, так как переизбыток элемента может вызвать серьезные проблемы со здоровьем у населения.
Также следует уточнить, что кипячение хлорированной воды не поможет устранить избыток этого элемента. Скорее наоборот, он превратится в не менее опасный для здоровья диоксин, который также является сильным ядом. Чтобы устранить этот элемент, хлорированную воду нужно сутки отстоять в отдельной емкости и в хорошо проветриваемом помещении.
Озонирование
Очистка воды озоном – еще одно действенное средство для обеззараживания. Озон обладает выраженным окисляющим действием, способен проникать внутрь клетки, разрушать ее стенки и приводить к гибели патогенного микроорганизма (рисунок 4).
Преимущества озона в сравнении с хлором очевидны: он не только быстро уничтожает патогенные микроорганизмы, но также обесцвечивает и дезодорирует воду, практически мгновенно делая ее пригодной для питья.
При этом в городских системах водоснабжения чаще используется именно хлор, а не озон из-за нескольких минусов этого элемента. Во-первых, он способен окислять металлы и приводить к быстрому износу труб и оборудования. Во-вторых, последние исследования показали, что если рассчитать дозировку озона неправильно, он может привести к пробуждению патогенных микроорганизмов, ранее находившихся в спячке.
Рисунок 4. Озонирование мгновенно делает воду пригодной для питья
Кроме того, минусом данного метода считается его высокая стоимость и необходимость установки специального оборудования и найма персонала высокой квалификации из-за взрывоопасности газа.
Иодирование и бромирование
Среди других методов очистки и обеззараживания воды особенно выделяется йодирование и бромирование. К сожалению, несмотря на свою эффективность и надежность, очистка воды йодом, бромом или гипохлоритом натрия не используется по нескольким причинам.
К примеру, йод обладает выраженными бактерицидными свойствами и был известен еще в древности. Но, все попытки очистки воды йодом не привели к положительному результату: патогенные микроорганизмы действительно уничтожаются, но сама питьевая вода приобретает очень неприятный запах и вкус. Бром – еще один надежный химический элемент, который практически мгновенно уничтожает все патогенные микроорганизмы. Однако способ очистки с использованием данного элемента не практикуют массово из-за высокой стоимости брома.
В целом, в домашних условиях рациональнее применять физические методы быстрого и эффективного обеззараживания воды. Некоторые из них подойдут и для использования в полевых условиях, поэтому мы рассмотрим их более детально.
Ультразвуковые установки
Объяснить принцип обеззараживания воды с применением этих установок сложно, так как их работа основана на принципе кавитации. Данный процесс представляет собой воздействие на жидкость звуковыми колебаниями высокой интенсивности. В результате в ней образуются многочисленные пустоты, напоминающие процесс кипения. Резкие перепады в частоте ультразвукового облучения приводит к разрыву клеточных оболочек и гибели патогенных микроорганизмов (рисунок 5).
Рисунок 5. Принцип работы ультразвуковой установки
Обработка питьевой воды таким ультразвуком действительно безопасна и эффективна. Единственный минус – это эксплуатация оборудования. Важно, чтобы персонал умел настраивать такую установку. В противном случае обеззараживание либо не будет эффективным, либо установка выйдет из строя.
Термическое
Метод термической обработки воды считается самым распространенным среди обычного населения и активно практикуется в быту (рисунок 6).
Рисунок 6. В домашних условиях питьевую воду проще всего кипятить
Самый простой способ – просто вскипятить воду, предназначенную для питья. Под действием высоких температур в ней уничтожаются все патогенные микроорганизмы, но уже через сутки в ней могут снова поселиться микробы.
Но есть и другой метод – очистка питьевой воды через ее заморозку. Этот метод такой же простой и не менее эффективный. Его осуществляют так: воду заливают в металлическую или пластиковую емкость (но не в стеклянную) и ставят в морозильную камеру. Наполнять тару до краев не имеет смысла, так как при замерзании жидкость расширяется в объеме.
Чтобы эффективно очистить воду заморозкой, нужно следовать нескольким правилам:
- Чистая жидкость замерзает гораздо быстрее той, в которой содержатся примеси.
- Когда половина воды замерзнет, оставшуюся жидкость нужно слить, так как именно в ней могут содержаться вредные примеси.
- Оставшийся лед в дальнейшем размораживают и используют полученную жидкость для питья и приготовления пищи.
Стоит отметить, что талая вода считается полезной, так как способна активизировать восстановительные процессы в организме. По этой причине популярностью пользуются специальные станции обеззараживания воды методом заморозки, которые реализуют чистую талую жидкость.
Электроимпульсное
Принцип работы электролизных установок, предназначенных для обеззараживания воды, достаточно простой. В воду поступают электрические разряды, которые создают ударную волну. Микроорганизмы, попадая под ее воздействие, моментально погибают.
Преимущество данного способа, в сравнении с другими методами обеззараживания в том, что он обладает выраженной эффективностью, не требует предварительной очистки жидкость, а метод электролиза действует даже в мутной воде (рисунок 7).
Рисунок 7. Очистка воды электроимпульсами – действенный, но слишком дорогой метод
Кроме того, в такой воде погибают не только простые, но и крайне живучие микроорганизмы, поэтому эффект сохраняется в течение длительного времени (до 4 месяцев). Однако данный метод не получил широкого распространения из-за своей высокой стоимости и большого потребления энергии.
Обеззараживание полимерными соединениями
В последнее время популярностью стали пользоваться полимерные соединения, которые применяются для обеззараживания сточных и питьевых вод. Такие реагенты не меняют цвет и вкус жидкости, но при этом полностью уничтожают патогенные микроорганизмы и устраняют неприятный запах. Кроме того, такая фильтрация абсолютно безопасна для здоровья и сохраняется длительное время.
Обеззараживающие полимеры для воды не вступают в реакцию с металлами, а значит, не приводят к порче водопроводных труб или оборудования. Единственный минус дезинфицирующего средства – его высокая стоимость.
Обеззараживание серебром
Одним из самых древних считается метод очистки воды серебром. Его использовали еще наши предки. Кроме того, они считали, что серебро не только обеззараживает воду, но и исцеляет от многих болезней. Современные ученые доказали, что этот благородный металл действительно способен уничтожать многие микроорганизмы, но не известно, ликвидирует ли он простейшие бактерии (рисунок 8).
Рисунок 8. Ионы серебра также эффективно уничтожают патогенные микроорганизмы
Очистка воды данным способом действительно считается эффективной, но следует придерживаться минимальной дозы, которая требуется при обеззараживании. Дело в том, что при накоплении в организме этот металл может вызвать негативные последствия для здоровья. Именно поэтому дезинфекция серебряными ионами не используется в промышленности, а только в быту, для обработки незначительного количества питьевой воды.
Комбинированные способы обеззараживания
Более эффективными, считаются комбинированные методы обеззараживания воды. Они сочетают в себе химические и физические способы, и предназначены для повышения эффективности обработки.
В данный момент, именно такой подход считается наиболее прогрессивным, но все же практикуется преимущественно в быту, а не в промышленности из-за своей высокой стоимости.
Яркий пример комбинированного метода – использование компактной бактерицидной установки, предназначенной для обеззараживания небольших объемов воды в домашних условиях. Но гораздо чаще используют установку для обеззараживания воды ультрафиолетом в комплексе с хлорированием или озонированием. Лампы уничтожают микроорганизмы, а химические элементы предотвращают их повторное появление.
Если вас интересует, какой метод обеззараживания воды лучше использовать в быту или на природе, сразу следует уточнить, что для этих целей нужно использовать максимально простой, но при этом эффективный способ. К примеру, дома можно просто кипятить воду, предназначенную для питья. На природе же гораздо удобнее пользоваться специальными обеззараживающими таблетками.
Действенные методы очистки питьевой воды в домашних условиях приведены в видео.
Методы обеззараживания питьевой воды: нормативные документы и эффективные способы
Факультет экологии и химической технологии
Специальность: Экология химических производств
Методы обеззараживания воды 
Введение
      В настоящее время проблема обеззараживания воды является очень актуальной, поэтому в качестве индивидульного задания была выбрана именно эта тема. Также на выбор темы индивидуального задания повлияло ее непосредственное отношение к теме моей магистерской работы.
     Обеззараживание воды – мероприятия, в ходе которых происходит уничтожение микроорганизмов и вирусов, вызывающих инфекционные заболевания.
     По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на термические (кипячение); олигодинамические (обработка ионами благородных металлов); физические (обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д.); химические (обработка окислителями: хлором и его соединениями, озоном, перманганатом калия и т. п.) [1, 2].
Термический метод
     Кипячение является исключительно бытовым методом обеззараживания, однако он не дает полной гарантии гибели бактерий или их спор. Кроме того, при кипячении происходит удаление из воды растворенных в ней газов (кислорода, углекислого газа), что снижает ее вкусовые свойства.
     При кипячении происходит частичное смягчение воды из-за того, что в осадок выпадает часть солей кальция и магния, которые из растворимых гидрокарбонатных солей переходят в нерастворимые карбонатные [1].
Обеззараживание воды серебром
     Обработка воды, в которой содержится 0,05 – 0,2 мг / дм 3 серебра, втечение 30 – 60 мин дaет возможность достичь санитарных норм. Для растворения серебра в воде используют методы контактирования воды с развитой поверхностью металла, растворением солей серебра или электролитическим растворением металлического серебра. Наибольшее распространение получил последний метод, основанный на анодном растворении серебра.
     Однако серебро, как и другие тяжелые металлы, способно накапливаться в организме и вызывать заболевания (аргироз – отравление серебром). Кроме того, для бактерицидного действия серебра на бактерии требуются достаточно большие концентрации, а в допустимых количествах (около 50 мкг/л) оно способно оказывать лишь бактериостатическое действие, т.е. останавливать рост бактерий, не убивая их. А некоторые виды бактерий вообще практически не чувствительны к серебру.
     Все эти свойства ограничивают применение серебра. Оно может быть уместно только в целях сохранения исходно чистой воды для длительного хранения [2, 3].
Обеззараживание воды ультрафиолетовыми лучами
     Данный метод основан на способности ультрафиолетового излучения с определенной длиной волны губительно действовать на ферментные системы бактерий. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. Важно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания. В качестве источника излучения используются ртутные лампы, изготовленные из кварцевого песка.
     Метод не требует сложного оборудования и легко может применяться в бытовых комплексах водоподготовки в частных домах.
     Фактором, снижающим эффективность работы установок УФ-обез¬зараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.
     Основным недостатком метода является полное отсутствие последействия [4].
Ультразвуковая обработка воды
     Обеззараживание воды ультразвуком основано на способности его вызывать так называемую кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.
     В настоящее время этот способ еще не нашел достаточного применения в системах очистки воды, хотя в медицине он широко используется для дезинфекции инструментария и т.п. в так называемых ультразвуковых мойках [2].
Озонирование
     Озонирование воды основано на свойстве озона разлагаться в воде с образованием атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Количество озона, необходимое для обеззараживания воды, зависит от степени загрязнения воды и составляет 1–6 мг/дм 3 при контакте в 8–15 мин; количество остаточного озона должно составлять не более 0,3–0,5 мг/дм 3 , т. к. более высокая доза придает воде специфический запах и вызывает коррозию водопроводных труб. Однако молекула озона неустойчива, поэтому его остаточные количества быстро разлагаются в воде. С гигиенической точки зрения озонирование воды – один из лучших способов обеззараживания питьевой воды. При высокой степени обеззараживания воды оно обеспечивает ее наилучшие органолептические показатели и отсутствие высокотоксичных и канцерогенных продуктов в очищенной воде.
     Однако в связи с большим расходом электроэнергии, использованием сложной аппаратуры и необходимостью высококвалифицированного обслуживания, озонирование нашло применение для обеззараживания питьевой воды только при централизованном водоснабжении.
     Метод озонирования воды технически сложен и наиболее дорогостоящ. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это требует также дополнительного вспомогательного оборудования (озонаторы, компрессоры, установки осушки воздуха, холодильные агрегаты и т. д.), объемных строительно-монтажных работ.
     Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м3. К тому же существует опасность взрыва озоновоздушной смеси [1, 2].
Хлорирование
     Наиболее распространенным методом обеззараживания воды был и остается метод хлорирования. Это объясняется высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента – жидкого или газообразного хлора – и относительной простотой обслуживания.
     Очень важным и ценным качеством метода хлорирования является его последействие. Если количество хлора взято с некоторым расчетным избытком, так чтобы после прохождения очистных сооружений в воде содержалось 0,3–0,5 мг/л остаточного хлора, то не происходит вторичного роста микроорганизмов в воде.
     Хлор является сильнодействующим токсическим веществом, требующим соблюдения специальных мер по обеспечению безопасности при его транспортировке, хранении и использовании; мер по предупреждению катастрофических последствий в чрезвычайных аварийных ситуациях. Поэтому ведется постоянный поиск реагентов, сочетающих положительные качества хлора и не имеющих его недостатков.
     Предлагается применение диоксида хлора, который обладает рядом преимуществ, таких как: более высокое бактерицидное и дезодорирующее действие, отсутствие в продуктах обработки хлорорганических соединений, улучшение органолептических качеств воды, отсутствие необходимости перевозки жидкого хлора. Однако диоксид хлора дорог, должен производиться на месте по достаточно сложной технологии. Его применение имеет перспективу для установок относительно небольшой производительности.
     Применение для обеззараживания воды хлорсодержащих реагентов (хлорной извести, гипохлоритов натрия и кальция) менее опасно в обслуживании и не требует сложных технологических решений. Однако используемое при этом реагентное хозяйство более громоздко, что связано с необходимостью хранения больших количеств препаратов (в 3–5 раз больше, чем при использовании хлора). Во столько же раз увеличивается объем перевозок. При хранении происходит частичное разложение реагентов с уменьшением содержания хлора. Остается необходимость устройства системы притяжно-вытяжной вентиляции и соблюдения мер безопасности для обслуживающего персонала. Растворы хлорсодержащих реагентов коррозионно-активны и требуют оборудования и трубопроводов из нержавеющих материалов или с антикоррозийным покрытием [5].
Методы обеззараживания питьевой воды: нормативные документы и эффективные способы
Гигиенические рекомендации к режимам обеззараживания воды и дезинфекции водопроводных сооружений, сетей, шахтных колодцев и емкостей с питьевой водой. По мнению многих экспертов, хлорирование воды – это самое крупное изобретение в медицине, а точнее в профилактической гигиене XX века, принесшее огромную пользу человеку.
Именно хлорирование воды, а не открытие антибиотиков, инсулина или пересадка сердца спасло больше всего жизней. Оно остановило распространение кишечных инфекций в городах.
Хлорирование воды как средства ее обеззараживания было начато в начале XX века. Впервые хлор для обеззараживания воды стали использовать в Лондоне после эпидемии холеры 1870 года. В России хлорирование воды было осуществлено в 1908 году, также в связи с эпидемией холеры. В дальнейшем, его проводили в Кронштадте, Нижнем Новгороде, Ростове-на-Дону, Петербурге. На первом этапе, однако, это носило спорадический характер. В последующие годы хлорирование воды как эффективное средство борьбы с инфекционными заболеваниями распространилось во всем мире быстрыми темпами и в настоящее время такой водой пользуются многие сотни миллионов людей.
Не секрет, что хлор – это яд. Яд настолько сильный, что именно хлор был одним из первых газов, использовавшихся в первой мировой войне в качестве химического оружия. Токсичность хлора связана с его высокой окислительной способностью – он входит в тройку самых сильных галогенов. Это в свою очередь означает, что хлор способен разрушать любую органику и создавать на ее основе хлорорганические соединения.
В последнее время появляются новые методы обеззараживания воды. Но они пока еще дороже хлорирования и не гарантируют защиту от заражения уже обработанной воды после того, как она пошла по трубам. А потому отказываться от хлора еще рано.
1.1. Настоящие Гигиенические рекомендации к режимам обеззараживания воды и дезинфекции водопроводных сооружений, сетей, шахтных колодцев и емкостей с питьевой водой (далее – Рекомендации) основываются на положениях Федеральных законов «О санитарно-эпидемиологическом благополучии населения» от 30.03.1999 N 52-ФЗ и «О водоснабжении и водоотведении» от 07.12.2011№ 416-ФЗ и направлены на предоставление информации о требованиях нормативных правовых актов и методических документов в отношении вопросов обеззараживания воды и дезинфекции водопроводных сооружений, сетей, шахтных колодцев и емкостей с питьевой водой.
1.2. Нормативные ссылки:
– Правила холодного водоснабжения и водоотведения (утверждены Постановлением Правительства Российской Федерации от 29.07.2013 № 644) – [1];
– СНиП 2.04.02-84* «Водоснабжение. Наружные сети и сооружения» – [2];
– СНиП 2.04.01-85* «Внутренний водопровод и канализация зданий» – [3];
– СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» – [4];
– СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» – [5];
– СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» – [6];
– Инструкция по контролю за обеззараживанием хозяйственно-питьевой воды и за дезинфекцией водопроводных сооружений хлором при централизованном и местном водоснабжении (утверждена Главным санитарным врачом СССР 25.11.1967 N 723а-67) – [7] ;
– МУК 4.2.2029-05 «Санитарно-вирусологический контроль водных объектов» – [8];
– МР 2.1.10.0031-11 «Комплексная оценка риска возникновения бактериальных кишечных инфекций, передаваемых водным путем» – [9];
– МУ 3.1.2837-11 «Эпидемиологический надзор и профилактика вирусного гепатита А» – [10];
– МУ 3.1.1.2969-11 «Эпидемиологический надзор, лабораторная диагностика и профилактика норовирусной инфекции» – [11];
– МУ 3.1.1.2957-11 «Эпидемиологический надзор, лабораторная диагностика и профилактика ротавирусной инфекции» – [12].
2.1. Согласно Приложению 1 к «Минимальные нормы водообеспечения при водоснабжении населения путем подвода воды» минимальная норма водообеспечения для 1 климатической зоны составляет (л/сут на 1 чел.):
– для взрослого населения и подростков (от 14 лет и старше) – 2,5;
– для детей от 1 года до 14 лет и кормящих женщин -5.
2.2. Согласно п. 2.1. и примечания 1 к таблице 1, для районов застройки зданиями с водопользованием из водоразборных колонок удельное среднесуточное (за год) водопотребление на одного жителя следует принимать 30-50 л/сут.
2.3. Согласно Приложению 3 (обязательному) к, норма расхода воды потребителями в жилых домах квартирного типа с водопроводом и канализацией без ванн составляет 95 литров в сутки на 1 жителя.
3.1. Требования к микробиологическим показателям воды изложены:
– для воды централизованных систем питьевого водоснабжения – в;
– для воды источников нецентрализованного водоснабжения (шахтные
колодцы, каптажи родников и т.д.) – в;
– для воды, расфасованной в емкости (бутилированной воды) – в [6].
3.2. Меры профилактики инфекционных заболеваний, передаваемых водным путем, помимо нормативных правовых актов, изложены также в методических документах: [8], [9], [10], [11], [12].
4.1. Согласно п. 3.4.3. Таблица 3 [4], при обеззараживании воды централизованных систем питьевого водоснабжения содержание остаточного свободного хлора должно быть в пределах 0,3-0,5 мг/л, остаточного связанного хлора – в пределах 0,8-1,2 мг/л. Лимитирующий показатель для этого норматива – органолептический, Т.е. если содержание остаточного свободного хлора больше 0,5 мг/л, то его наличие ощутит практически все население. При обеззараживании воды свободным хлором время его контакта с водой должно составлять не менее 30 минут, связанным хлором – не менее 60 минут. Контроль за содержанием остаточного хлора производится перед подачей воды в распределительную сеть, то есть, в обычных условиях 0,5 мг/л должно быть в 1-ой точке водопотреблеиия (в последующих точках распределительной сети водопровода – соответственно, меньше, а в тупиковых и дальних точках – следы остаточного свободного хлора или даже его отсутствие).
4.2. В соответствии с п. 3.4.3. Таблица 3 [4], в отдельных случаях по согласованию с органом, осуществляющим федеральный государственный санитарно-эпидемиологический надзор, может быть допущена повышенная концентрация хлора в питьевой воде. Это целесообразно в паводковый период (в этот период повышена мутность воды) или в случаях, когда есть основания в ухудшении микробиологических показателей воды.
4.3. Обязательным условием постоянного обеззараживании воды является регулярный производственный контроль за содержанием остаточного хлора в воде (обычно 1 раз в час), проводимый организацией, эксплуатирующей водопровод.
4.4. Обеззараживание общественных колодцев.
Если мероприятия по устранению ухудшения качества воды не привели к стойкому улучшению ее качества по микробиологическим показателям, вода в колодце должна постоянно обеззараживаться хлорсодержащими препаратами либо иными средствами и методами, разрешенными к применению и направленными на уничтожение бактериального и вирусного загрязнения.
Обеззараживание воды в колодце проводится после дезинфекции самого колодца с помощью различных приемов и методов, но чаще всего с помощью дозирующего патрона, заполненного, как правило, хлорсодержащими препаратами. Патрон возможно изготовить самостоятельно, используя пластиковую бутылку из-под питьевой воды объемом 0,5л (либо другой емкости, исходя из количества дезинфицирующего препарата), предварительно перфорированную, на дно помещается груз (камни).
По количеству препарата подбирают подходящий по емкости патрон (или несколько патронов меньшей емкости), заполняют его препаратом, добавляют воды при перемешивании до образования равномерной кашицы, закрывают пробкой и погружают в воду колодца на расстояние от 20 до 50 см от дна в зависимости от высоты водяного столба, а свободный конец веревки (шпагата) закрепляют на оголовке шахты.
При уменьшении величины остаточного хлора или его исчезновения (примерно через 30 суток) патрон извлекают из колодца, освобождают от содержимого, промывают и вновь заполняют дезинфицирующим препаратом.
5.1. От обеззараживания воды необходимо отличать дезинфекцию водопроводных сооружений, сетей, шахтных колодцев и емкостей с питьевой водой.
Обеззараживание воды – это постоянное и регулярное мероприятие, которое безопасно (при регулярном лабораторном контроле за содержанием остаточного хлора в воде) для людей ввиду относительно небольших концентраций хлора в воде, а дезинфекция – это разовое мероприятие для одномоментного уничтожения микроорганизмов заведомо избыточными дозами дезинфицирующих средств с полным исключением (на период дезинфекции) возможности людей пользоваться водой в это период.
Для этого обязательно проводится оповещение населении о том, что проводится дезинфекции (объявления, плакаты, аншлаги, информация по радио, телевидению, посредством громкоговорителей и т.д.)
5.2. Согласно п. 19 [7], для повышения надежности дезинфекции и сокращения ее продолжительности рекомендуется применять растворы с концентрацией активного хлора 75-100 мг/л при контакте 5-6 часов.
Для упрощения расчетов можно принять концентрацию активного хлора 100 мг/л при контакте 6 часов (например, в течение ночи, когда население информируется о запрещении пользования водопроводом в ночное время и огромной дозе хлора в распределительной сети водопровода).
5.3. Хлорсодержащие дезинфицирующие средства опасны, поэтому обращение с ними должно быть – только в средствах защиты органов дыхания и кожи.
5.4. В качестве хлорсодержащего дезинфицирующего средства возможно применение сухой хлорной извести или гипохлорита кальция или натрия, таблеток «Акватабс 8,68 г» и других разрешенных дезинфицирующих средств.
Для упрощения расчетов можно считать содержание активного хлора:
– в сухой хлорной извести – 25 % (обычно 18-27 %);
– в гипохлорите кальция или натрия 50 % (может быть до 52 %),
– в 1 таблетке «Акватабс 8,68 г» содержится 5 г активного хлора.
5.5. Пункт 15 [7] указывает, что для приготовления раствора хлорной извести крепостью 1-5 % берется 10-50 г хлорной извести на 1 литр воды. При отсутствии весов можно пользоваться для отмеривания извести ложками, стаканами и другими предметами известной емкости, принимая вместимость чайной ложки 2-2,5 г хлорной извести, столовой ложки 9-12 г, стакана – 120 г.
Отмеренное количество хлорной извести высыпают в кружку или миску, добавляют к ней немного воды и растирают в сметанообразную массу без комков. Затем эту массу разбавляют нужным количеством воды и тщательно перемешивают. Приготовленный раствор хлорной извести употребляется для хлорирования после отстаивания.
Таким же образом готовят растворы гипохлорита заданной концентрации. Таблетки Акватабс быстрорастворимые, поэтому предварительного отстаивания не требуется.
5.6. При дезинфекции больших объемов практичнее использовать:
– 10 % раствор хлорной извести из расчета 100 г хлорной извести на 1 литр воды, или 1 кг сухой хлорной извести на 10 литров воды;
– 5% раствор гипохлорита из расчета 50 г гипохлорита на 1 литр воды, или 5 кг гипохлорита на 10 литров воды
5.7. Для последующих расчетов надо знать, в частности, длину и диаметр труб (для математических расчетов по объему содержащейся в них воды) и провести расчет объема воды в скважинах, водопроводных сооружениях и сетях населенного пункта.
Согласно примечанию к п. 23 [7], расчетный объем хлорного раствора для обеззараживания сети определяется по внутреннему объему труб с добавлением 3-5% (на вероятный излив). Объем 100 м труб при диаметре 50 мм составляет 0,2 м 3 , 75 мм – 0,5 м 3 , 100 мм – 0,8 м3, 150 мм – 1,8 м 3 , 200 мм-
3,2 м 3 , 250 мм – 5 м 3 .
5.8. К примеру, объем воды в скважинах, водопроводных сооружениях и сетях населенного пункта, равный 100 кубометров.
Для достижения концентрации активного хлора. 100 мг/л при контакте 6 часов надо иметь (в пересчете на активный хлор, и, зная, что в 1 кубометре содержится 1000 литров, а в 1 грамме содержится 1000 миллиграммов), надо иметь (это несложно вычислить) 100 граммов активного хлора на 1 кубометр; или
– 400 граммов сухой хлорной извести на 1 кубометр (из расчета, что содержание активного хлора в ней – 25 %, см. п. 5.4. настоящих Рекомендаций).
– 200 граммов гипохлорита на 1 кубометр (из расчета, что содержание активного хлора в нем – 50 %,
– 20 таблеток «Акватабс 8,68 г» на 1 кубометр (содержание активного хлора в 1 табл. – 5 г).
Для дезинфекции 100 кубометров объема в скважинах, водопроводных сооружениях и сетях населенного пункта необходимо 40 килограммов сухой хлорной извести или 20 кг гипохлорита. Акватабс для таких больших объемов использовать нецелесообразно.
5.9. Из рассчитанного количества килограммов сухой хлорной извести или гипохлорита необходимо приготовить 5-10% растворы (см. п. 5.6. настоящих Рекомендаций).
5.10. Полученные растворы хлорной извести необходимо закачать в скважины, водопроводные сооружения и сети населенного пункта (желательно добиваться более или менее равномерного распределения раствора по сети) и оставить на 6 часов (ночью) с оповещением населения, что пользоваться водопроводом нельзя.
5.11. Согласно п. 23 [7], введение хлорного раствора в сеть продолжают до тех пор, пока в точках, наиболее удаленных от места его подачи, будет содержаться активного хлора не менее 50 % от заданной дозы. С этого момента дальнейшую подачу хлорного раствора прекращают и оставляют заполненную хлорным раствором сеть не менее чем на 6 часов. По окончании контакта хлорную воду спускают и промывают сеть чистой водопроводной водой. Условия сброса воды из сети определяются на месте по согласованию с органами, осуществляющими федеральный государственный санитарно-эпидемиологический надзор и органами, осуществляющими экологический надзор. В конце промывки (при содержании в воде 0,3-0,5 мг/л остаточного хлора) из сети отбирают пробы для контрольного бактериологического анализа. Дезинфекция считается законченной при благоприятных результатах двух анализов, взятых последовательно из одной точки.
5.12. В соответствии с п. 24 [7], результаты работ оформляются актом, в котором указывается дозировка активного хлора, продолжительность хлорирования (контакта) и заключительной промывки, данные контрольных анализов воды.
6.1. Последовательность действий здесь аналогична действиям в предыдущем 5 разделе настоящих Рекомендаций, кроме следующего:
– оповещение население в данном случае видоизменяется в соответствии с назначением емкости с питьевой водой;
– объемы емкостей с питьевой водой меньшие, поэтому и расчеты, и практическая работа по приготовлению хлорного раствора упрощается; необходимо активное перемешивание воды после вливания хлорного раствора для более равномерного его распределения в емкости.
6.2. Для примера возьмем спецавтоцистерну по подвозу питьевой воды емкостью 5 кубометров. Как легко подсчитать, для приготовления хлорного раствора требуется:
– 2 килограмма сухой хлорной извести (из расчета 400 граммов сухой хлорной извести на 1 кубометр,
– или 1 кг гипохлорита (из расчета 200 граммов на 1 кубометр,
– или 100 таблеток Акватабс 8,68 г (содержание активного хлора в 1 табл. – 5 г) см. п. 5.8. настоящих Рекомендаций).
6.3. Огромные открытые резервуары питьевой воды дезинфицируются не объемным методом (как описано в 5 разделе и п.п. 6.1, 6.2. настоящих Рекомендаций), а методом орошении согласно п. 22 [7].
7.1. Требования к проведению дезинфекции шахтных колодцев изложены в Приложении 1 к [5].
7.2. Предварительная дезинфекция колодца Перед дезинфекцией колодца расчетным методом определяют объем воды в нем (в м 3 ) путем умножения площади сечения колодца (в м 2 ) на высоту водяного столба (в м).
7.3. Проводят орошение из гидропульта наружной и внутренней части ствола шахты 5%-ным раствором хлорной извести (2,5% раствором гипохлорита) из расчета 0,5 л на 1 м 2 поверхности.
7.4. Зная объем воды в колодце, проводят дезинфекцию нижней (водной) части его путем внесения хлорсодержащих препаратов из расчета 100 – 150 мг (г) активного хлора на 1 л (м 3 ) воды в колодце.
Воду тщательно перемешивают, колодец закрывают крышкой и оставляют на 1,5 – 2 часа, не допуская забора воды из него.
7.5. Точный расчет количества хлорной извести или гипохлорита, необходимого для создания в воде колодца заданной дозы активного хлора (100 – 150 мг (г) на 1 л (м 3 ), проводят по формуле:
Р – количество хлорной извести (гипохлорита), грамм;
С – заданная доза активного хлора в воде колодца, мг/л (г/м 3 );
Е – объем воды в колодце, м 3 ;
Н – содержание активного хлора в препарате, %;
100 – числовой коэффициент.
7.6. Очистка колодца Очистка колодца проводится через 1,5-2 часа после предварительной дезинфекции колодца. Колодец полностью освобождают от воды, очищают от попавших в него посторонних предметов и накопившегося ила. Стенки шахты очищают механическим путем от обрастаний и загрязнений.
7.7. Выбранные из колодца грязь и ил вывозят на свалку или погружают в заранее выкопанную на расстоянии не менее 20 м от колодца яму глубиной 0,5 м и закапывают, предварительно залив содержимое ямы 10%-ным раствором хлорной извести (5% раствором гипохлорита).
7.8. Стенки шахты очищенного колодца при необходимости ремонтируют, затем наружную и внутреннюю часть шахты орошают из гидропульта 5%-ным раствором хлорной извести (2,5% раствором гипохлорита) из расчета 0,5 л на 1 м 2 поверхности.
После очистки, ремонта и дезинфекции стенок шахты приступают к повторной дезинфекции колодца.
7.9. Выдерживают время, в течение которого колодец вновь заполняется водой, повторно определяют объем воды в нем (м 3 ) и вносят потребное количество раствора хлорной извести или ДТСГК из расчета 100-150мг (г) активного хлора на 1 л (м 3 ) воды в колодце.
7.10. После внесения дезинфицирующего раствора, воду в колодце перемешивают в течение 10 мин, колодец закрывают крышкой и оставляют на 6 ч, не допуская забора воды из него.
7.11. По истечении указанного срока наличие остаточного хлора в воде определяют качественно – по запаху или с помощью йодометрического метода. При отсутствии остаточного хлора в воду добавляют 0,25-0,3 первоначального количества дезинфицирующего препарата и выдерживают еще 3-4 ч.
7.12. После повторной проверки на наличие остаточного хлора и положительных результатов такой проверки проводят откачку воды до исчезновения резкого запаха хлора. И только после этого воду можно использовать для питьевых и хозяйственно-бытовых целей.