Тепловой пункт: преимущества и недостатки, виды и особенности, схема отопления

Индивидуальные тепловые пункты и их преимущества

В последние годы все больше внимания уделяется связанным с решением проблем рационального употребления энергии вопросам. При этом максимальный упор делается на осуществление успешного выполнения таких задач как:

  • Снижение затрат потребляемых энергетических ресурсов
  • Обеспечение комфортного микроклимата в помещениях
  • Стабильная эксплуатация оборудования теплоснабжения
  • Минимизация трат на использование теплосетей

Одной из важнейших частей большого количества современных систем, обеспечивающих централизованный тип обогрева зданий, является индивидуальный тепловой пункт. Его главным функционалом является осуществление распределения и циркуляции нагретой воды по трубопроводам. Располагается он в отдельном обособленном помещении, а грамотное его применение позволяет оптимизировать связанные с отоплением затраты.

Актуальность энергосбережения

Наша страна на текущий момент является одним из самых энергорасточительных мест в мире. Наибольший пик связанных с теплом потерь наблюдается в промышленной сфере (в связи с износом оборудования), в жилищно-коммунальном хозяйстве (во многом из-за применения устаревших технологий), а также непосредственно на самих предприятиях топливно-энергетического комплекса.

На долю ЖКХ приходится до трети всех потерь, а это сотни миллионов тонн неоправданно потраченного горючего, наносящие сильный удар по экономике государства. Поэтому проблема сбережения энергии является одной из наиболее актуальных в коммунальной сфере, затраты которой становятся все более обременительными для местного и федерального бюджета. Самым эффективным способом решения проблемы является отказ от устаревших централизованных тепловых пунктов и планомерный переход на ИТП, работающие в автоматическом режиме и с куда большей эффективностью, с полным учетом индивидуальных особенностей конкретных зданий и возможностью гибкой коррекции вырабатываемой температуры.

Недостатки ЦТП

Центральный или централизованный тепловой пункт, также известный как ЦТП, давно устарел в моральном и техническом плане, а его эксплуатация связана с огромными энергетическими потерями. Минусов у его использования очень много:

  • Жалобы жильцов на некачественный обогрев помещений
  • Трудность устранения возникающих проблем
  • Неоправданно высокий расход тепловой энергии
  • Частые аварийные незапланированные отключения

ЦТП, к сожалению, распространенные пока еще повсеместно, характеризуются необычайно низким КПД, в результате которого реальные затраты энергии могут превышать запланированные на десятки процентов. Проблему может в корне изменить активный переход ЖКХ на установку и использование ИТП – индивидуальных тепловых пунктов.

Преимущества ИТП

Существует множество причин отказаться от центральных пунктов теплоснабжения, отдав предпочтение индивидуальным, использующим в своем работе энергосберегающее оборудование нового поколения. Такой переход позволит постепенно отстраниться от эксплуатации традиционных распределительных сетей водоснабжения, повысив тем самым эффективность регулирования нужд отопления, а также сократить потери, связанные с доставкой тепла конечному потребителю и уменьшить затраты электричества, вызванные необходимостью транспортировки нагретой воды в помещения.

Использование индивидуальных тепловых пунктов – это перемещение центров, обеспечивающих здание отоплением и горячим водоснабжением, непосредственно в состав конструкции дома, позволяющее повысить качество снабжения и снести энергетические потери к минимуму. Растущая с каждыми днем популярность ИТП связана с тем, что они превосходят устаревшие ЦТП практически по всем показателям, выигрывая у последних за счет:

  • Простоты применения и обслуживания
  • Уменьшения расходов на эксплуатацию
  • Сокращения потерь тепла
  • Минимизации затрат тока на циркуляцию
  • Надежности функционирования
  • Оптимизации потребления топлива
  • Возможности гибкого контроля теплосетей
  • Точности учета потерь тепла
  • Отсутствия незапланированных отключений
  • Сокращения опасных и вредных выбросов в атмосферу

Размещение индивидуального теплового пункта не потребует выделения большого помещения, что позволяет рациональнее использовать окружающее пространство. Переход на новое оборудование возможен в том числе и для уже существующих объектов жилого и нежилого комплекса, позволяя свести энергопотребление к минимуму и существенно повысить комфорт, особенно в зимнее время года.

Рекомендуем к прочтению

Как не ошибиться при продаже автомобиля Достоинства и недостатки использования наружной рекламы Как построить своими руками дом из деревянного бруса Как правильно выбрать систему видеонаблюдения?

Добавить комментарий Отменить ответ

Понятия вентиляция достаточно обширное, потому как существуют различные системы воздухообмена в помещениях.

По законодательству, если в доме меньше трёх этажей, проводить инженерно-геологические изыскания участка не обязательно.

Особенности схем тепловых пунктов систем теплоснабжения

Рубрика: 8. Строительство

Дата публикации: 14.06.2016

Статья просмотрена: 884 раза

Библиографическое описание:

Рафальская Т. А. Особенности схем тепловых пунктов систем теплоснабжения [Текст] // Технические науки: проблемы и перспективы: материалы IV Междунар. науч. конф. (г. Санкт-Петербург, июль 2016 г.). — СПб.: Свое издательство, 2016. — С. 86-89. — URL https://moluch.ru/conf/tech/archive/166/10747/ (дата обращения: 25.02.2020).

Проведён анализ основных особенностей существующих схем, автоматизации, степени централизации тепловых пунктов систем централизованного теплоснабжения.

Ключевые слова: система централизованного теплоснабжения, тепловая сеть, тепловой пункт

Тепловой пункт — это промежуточное звено между тепловой сетью и потребителями теплоты, которое обеспечивает связь между тепловой сетью и местными системами отопления, вентиляции и горячего водоснабжения, включая управление ими. Тепловые пункты (ТП) подразделяются на центральные — ЦТП, от которых снабжаются одновременно несколько зданий-потребителей теплоты, и индивидуальные — ИТП, к которым присоединяются системы отопления, вентиляции, горячего водоснабжения и технологические теплоиспользующие установки одного здания [1]. Устройство ИТП обязательно для каждого здания независимо от наличия ЦТП, при этом в ИТП предусматриваются только те функции, которые необходимы для присоединения систем потребления теплоты данного здания, но не предусмотренные в ЦТП [1, п. 1.5]. Как показано в работах [2, 3, 4, 5, 6], существует оптимальная степень централизации ТП. В настоящее время в связи с появлением малогабаритных бесшумных насосов (которые можно устанавливать на трубопроводах непосредственно в подвалах зданий), компактных теплообменников и бесшумных регулирующих клапанов преимущество отдаётся схемам с ИТП [4], поскольку в этом случае производится индивидуальное регулирование систем теплопотребления каждого здания и сокращается металлоёмкость квартальной тепловой сети (тепловая сеть двухтрубная). Однако, в [2] отмечается, что при устройстве ЦТП распределение теплоносителя производится проще, быстрее и точнее из-за наличия меньшего количества точек распределения, что увеличивает гидравлическую устойчивость и, следовательно, надёжность тепловой сети. Кроме того, заметным преимуществом ЦТП является значительное снижение количества необходимых авторегуляторов. Иногда высказывалось мнение [4, 7, 8], что вариант с ЦТП обязательно приводит к перерасходу теплоты за счет увеличения тепловых потерь в разводящих сетях после ЦТП (четырёхтрубные квартальные сети), а также вследствие того, что каждый городской микрорайон кроме жилых имеет общественные здания, режим потребления тепла в которых заметно отличается от режима потребления в жилых. Однако, как отмечается в [2], наличие общего для квартала режима отопления, не исключает возможности дополнительного местного регулирования на вводе в здания, а наоборот, облегчает схемы и конструкции авторегуляторов. Устройство ИТП в каждом здании позволяет применять пофасадные системы отопления в жилых зданиях или, что более эффективно, индивидуальные регуляторы у отопительных приборов, за счет чего может быть получена экономия теплоты. Разделение режима магистральных и распределительных сетей возможно при устройстве контрольно-распределительных пунктов (КРП), которые могут быть районными (РТП) или групповыми (ГТП) [5]. Основным назначением КРП является поддержание гидравлического режима и защиты распределительных тепловых сетей.

В [3] произведено экономическое сравнение эксплуатационных расходов вариантов схем, имеющих и не имеющих ЦТП и сделан вывод о целесообразности сооружения одного ЦТП на квартал с нагрузкой 15–25 Гкал/час (20–30 МВт) и совмещение его с КРП, что повышает надёжность и маневренность системы теплоснабжения. Система теплоснабжения, имеющая несколько меньших ЦТП на квартал менее экономична за счет увеличения суммарной стоимости ЦТП. Сооружение более крупных ЦТП нецелесообразно, поскольку резко возрастает стоимость прокладки трубопроводов ГВС из-за появления распределительных сетей диаметром до 300–350 мм.

Таким образом, необходимость выбора системы с ЦТП или ИТП должна решаться в каждом случае индивидуально, в зависимости от мощности системы теплоснабжения, рельефа местности и соответственно, гидравлического режима работы тепловой сети, наличия общественных и производственных зданий, имеющихся приборов и средств авторегулирования.

Цель автоматизации ТП состоит в наиболее эффективном решении задачи теплоснабжения — подачи потребителям теплоты (воды) необходимого качества и количества без непосредственного вмешательства человека.

Задачи автоматизации ТП в соответствии с [1] состоят в следующем:

– регулирование отпуска теплоты на отопление и вентиляцию в зависимости от температуры наружного воздуха;

– обеспечение заданной температуры воды в системе горячего водоснабжения;

– автоматическое снижение давления на входе в ТП;

– рассечка сети на две гидравлически изолированные зоны в статических условиях при остановке подкачивающих насосов, в случае недопустимых статических условий, поддержание гидравлического режима в сетях за ЦТП;

– снижение давления на всасывающем патрубке смесительно-подкачивающих насосов;

– включение резервного насоса при остановке одного из работающих;

– при водоразборе автоматическое включение сетевого насоса горячего водоснабжения и отключение циркуляционного насоса;

– при отсутствии водоразбора отключение насоса горячей воды и включение циркуляционного насоса;

– отключение подкачивающих насосов системы отопления при падении давления в подающем трубопроводе;

– прекращение подачи воды в баки-аккумуляторы при достижении верхнего уровня воды в баках; при достижении нижнего уровня — отключение насосов горячей воды;

– регулирование подпитки систем отопления — в ЦТП с независимым присоединением систем отопления;

– измерение параметров теплоносителя и учет расхода теплоты.

Выводы.

Указанные особенности работы современных систем автоматизации ТП позволяют сформулировать общие выводы по рассмотренным системам группового и местного авторегулирования отопительной нагрузки.

  1. Регулирование отпуска теплоты на отопление может производиться по:

– усреднённой температуре наружного воздуха за сравнительно длительный период времени 6–12 ч;

– усреднённой внутренней температуре представительных помещений;

– внутренней температуре устройства, моделирующего тепловой режим зданий;

Выбор каждого из указанных параметров имеет свои достоинства и недостатки. Регулирование параметров теплоносителя только по наружной температуре tн упрощает систему регулирования, но не позволяет учитывать бытовые тепловыделения в зданиях Qбыт, что, однако учитывается при расчете системы отопления и определении её тепловой мощности Qо в соответствии с СП 7.13130.2013 Отопление, вентиляция и кондиционирование. Регулирование Qо только по температуре внутреннего воздуха tв значительно усложняет систему автоматизации из-за необходимости большого количества датчиков и линий связи, а кроме того, как отмечается в [6], может привести к перерасходу теплоты — при отоплении с открытыми форточками. Оптимальными являются системы комбинированного регулирования с поддержанием заданного графика температуры воды в системе отопления с коррекцией по температуре внутреннего воздуха.

  1. В схемах с ограничением расхода сетевой воды, особенно при повышенном температурном графике необходимо местное количественное регулирование отпуска теплоты в систему отопления.
  2. У абонентов с нагрузкой отопления и горячего водоснабжения система автоматического регулирования (САР) не должна допускать увеличения суммарного расхода сетевой воды выше заданной величины. В противном случае может быть нарушен гидравлический режим сети, вследствие чего удалённые абоненты не будут получать теплоту. Должна быть исключена возможность компенсации недоотпуска теплоты на отопление за счет дополнительного (сверх расчетного) расхода сетевой воды на ТП при максимальной нагрузке горячего водоснабжения при температуре сетевой воды не соответствующей требуемой температуре по графику центрального регулирования. Как показали результаты моделирования режимов ТП [9, 10], необходимо отключать подогреватель II ступени при наружной температуре ниже расчётной, или ограничивать расход воды на вторую ступень подогревателя горячего водоснабжения.
  1. СП 41–101–95. Правила по проектированию и строительству тепловых пунктов / Минстрой России. — М.:ГУП ЦПП, 1997. — 78 с.
  2. Громов Н. К. Какие тепловые пункты строить — центральные или индивидуальные / Н. К. Громов // Водоснабжение и санитарная техника.  1974.  № 12.  С. 17–22.
  3. Громов Н. К. Технико-экономические основы применения контрольно-распределительных пунктов в крупных тепловых сетях при закрытой системе теплоснабжения / Н. К. Громов // Теплоэнергетика.  1980.  № 2.  С. 18–22.
  4. Ливчак В. И. За оптимальное сочетание автоматизации регулирования подачи и учета тепла / В. И. Ливчак // АВОК.  1998.  № 4.  С. 44–50.
  5. Ливчак В. И. Оптимальная степень централизации тепловых пунктов в закрытых системах централизованного теплоснабжения / В. И. Ливчак // Водоснабжение и санитарная техника.  1975.  № 8.  С. 26–31.
  6. Соколов Е. Я. О схемах автоматизации абонентских установок крупных городских систем централизованного теплоснабжения / Е. Я. Соколов, Н. М. Зингер // Водоснабжение и санитарная техника.  1980.  № 10.  С. 17–18.
  7. Ливчак В. И. Улучшение работы ЦТП — реальный путь повышения качества и экономичности теплоснабжения жилых микрорайонов / В. И. Ливчак, Н. Н. Чистяков // Водоснабжение и санитарная техника.  1976.  № 4.  С. 20–25.
  8. Математическое обеспечение оптимального выбора оборудования тепловых пунктов // Новости теплоснабжения.  2001.  № 12.  С. 46–48.
  9. Рафальская Т. А. Моделирование и компьютеризация тепловых и гидравлических режимов систем теплоснабжения / Т. А. Рафальская, А. С. Басин // Энергетика: экология, надежность, безопасность: Материалы докладов седьмой всероссийской научно-технической конференции.  Томск: Изд-во ТПУ, 2001. Т. 1.  С.133–136.
  10. Рафальская Т. А. Тепловые и гидравлические режимы систем централизованного теплоснабжения / Т. А. Рафальская // Актуальные вопросы технических наук: теоретический и практический аспекты: коллективная монография [под. ред. И. А. Григорьева]. — Уфа: Аэтерна, 2016. — С. 116–171.
Читайте также:  Утепленная шведская плита: структура, плюсы и минусы, варианты своими руками

Тепловые пункты зданий с независимым и зависимым присоединением систем отопления (разновидности схем, достоинства и недостатки, область применения).

Тепловые пункты – важное звено в системах централизованного теплоснабжения, связывающее тепловую сеть с потребителями и представляющее собой узел присоединения потребителей тепловой энергии к тепловой сети. Основное назначение теплового пункта заключается в подготовке теплоносителя определенной температуры и давления, регулировании их, поддержании постоянного расхода, учете потребления теплоты.

Тепловые пункты подразделяются на: индивидуальные тепловые пункты (ИТП) – для присоединения систем отопления, вентиляции, горячего водоснабжения и технологических теплоиспользующих установок одного здания или его части и центральные (ЦТП) – то же, для двух или более зданий.

Основное оборудование ТП состоит из элеваторов, центробежных насосов, теплообменников, смесителей, аккумуляторов горячего водоснабжения, приборов контроля и учета теплоты и устройств для защиты от коррозии и образования отложений накипи в системах горячего водоснабжения.

При местном теплоснабжении тепловым пунктом системы отопления является местная водогрейная котельная.

Рис. 6.8. Принципиальная схема теплопроводов местной водогрейной котельной

/ — распределительный коллектор; 2 — котел теплоснабжения систем отопления и вентиляции; 3 — котел

теплоснабжения системы горячего водоснабжения; – задвижка (нормально закрыта); 5 —

расширительный бак; 6 — регулирую­щий клапан; 7 — теплообменник системы горячего водоснабжения;

8 – сборный коллектор; 9 — грязевик; 10 — циркуляционный насос

Принципиальная схема местного теплового пункта при независимом присоединении системы насосного водяного отопления к наружным теплопроводам с необходимой запорной, контрольно-измерительной и регулирующей арматурой показана на рис.6.9

Рис.6.9 Принципиальная схема местного теплового пункта при независимом присоединении системы водяного отопления к наружным теплопроводам.

1 — задвжка;2 – грязевик; 3 — манометры; 4 — регулятор давления; 5 — от-ветвлевля к системам вентиляции и горячего водоснабжения; 6 — теплообмен­ник; 7 — обратный клапан; 8 — циркуляционный насос; 9 – расширительный бак; 10 – подпиточный насос; 11 — клапан с электроприводом; 12 – регули­рующий клапан; 13 — термометр; 14 — тепломер

Подпиточный насос 10 на этой линии устанавливают только тогда, когда гидростатическое давление в системе отопления превышает давление в наружных теплопроводах.

Для нагревания воды tГ служит теплообменник.

При данной схеме давление в местной СО не зависит от давления в ТС. Поэтому данная схема применяется, когда необходимо гидравлически изолировать местную систему отопления от ТС. В связи с увеличением тепловой нагрузки, радиуса действия тепловых сетей, а также со строительством зданий выше 12 этажей, для которых давления воды в сетях недостаточно для заполнения отопительных приборов в верхних этажах, независимая схема является более рациональной, а иногда и единственно приемлемой. Местная СО оборудуется при этом расширительным баком, создающим собственное независимое от ТС гидростатическое давление. Эта схема дороже и сложнее зависимого присоединения.

Принципиальная схема местного теплового пункта при зависимом присоединении системы водяного отопления к наружным теплопроводам со смешением воды при помощи водоструйного элеватора дана на рис.6.10

Рис. 6.10. Принципиальная схема местного теплового пункта при зависимом при­соединении системы водяного отопления к наружным теплопроводам со смешением воды с помощью водоструйного элеватора

1 — задвижка; 2 грязевик: 3 — термометр: 4 —• ответвления к системам вен­тиляции и горячего водоснабжения; 5 — регулятор расхода; 6 — обратный кла­пан; 7 — водоструйный элеватор; 8 — манометры; 9 – тепломер; 10 – регуля­тор давления

Этот способ присоединения наиболее широко применяется для жилых и общественных зданий до 12 этажей. Простота и надежность работы элеватора, не требующего постоянного обслуживания, и дешевое оборудование теплового пункта отличают эту схему.

К недостаткам этой схемы относят: прекращение независимой 9автономной) от тепловой сети циркуляции воды в системе отопления и замораживание её при аварийном отключении от тепловой сети, сопротивление элеватора составляет 80 % (сужение) от сопротивления всей системы, элеватор труднот регулируем и мешает нормальной циркуляции.

Рис. 6.11. Принципиальная схема местного теплового пункта при зависимом пря­моточном присоединении системы водяного отопления к наружным теплопроводам

1 — задвижка; 2 грязевик; 3 — термометр; 4 — манометры; 5 – регулирующий клапан; 6 – обратный клапан; 7 — тепломер; 8 — регулятор давления

По такой схеме присоединяют системы водяного отопления зданий, в которых либо температура поверхности отопительных приборов не ограничена, либо она соответствует санитарно-гигиеническим требованиям, а также системы воздушного отопления. При этой схеме используется наиболее простое и дешевое оборудование ТП. Кроме того, благодаря максимальному использованию температурного перепада сетевой воды в отопительных приборах снижается расход воды на ТП и сокращается стоимость тепловой сети за счет уменьшения диаметров теплопроводов. Недостатком является передача давления сетевой воды на отопительные приборы, поэтому эта схема приемлема, если давление в сети не превышает допустимого давления отопительных приборов по механической прочности ( 0,6-0,9 МПа – для чугунных радиаторов и 1,0 МПа – для стальных конвекторов).

Тепловые пункты: устройство, работа, схема, оборудование

Тепловой пункт представляет собой комплекс технологического оборудования, которое используется в процессе теплоснабжения, вентиляции и горячего водоснабжения потребителей (жилых и производственных зданий, строительных площадок, объектов социального назначения). Главное назначение тепловых пунктов – это распределение тепловой энергии от тепловой сети между конечными потребителями.

Все тепловые пункты полностью автоматизированы, что сводит к минимуму эксплуатационные и трудовые затраты. Работа пунктов ТП заключается в водоподготовке, регулировании параметров теплоносителя, его распределении и контроле требуемых параметров, отключении и защите систем теплопотребления в случае аварийных ситуаций, учете расхода теплоносителя и получаемой энергии.

Мощность теплового пункта может достигать 50 МВт при рабочей температуре до 150°С. В качестве теплоносителя могут выступать жидкости, как, например, вода, пар или различные антифризы.

Проектирование, изготовление, комплектация и эксплуатация тепловых пунктов отвечают требованиям СП 41-101-95 “Проектирование тепловых пунктов”.

Преимущества установки тепловых пунктов в системе теплоснабжения потребителей

Среди преимуществ тепловых пунктов можно назвать следующие:

  • минимизация тепловых потерь
  • сравнительно низкие эксплуатационные затраты, экономичность
  • возможность выбора режима теплоснабжения и теплопотребления в зависимости от времени суток и сезона
  • бесшумная работа, малые габариты (по сравнению с другим оборудованием системы теплообеспечения)
  • автоматизация и диспетчеризация процесса эксплуатации
  • возможность изготовления по индивидуальному заказу

Тепловые пункты могут иметь разные тепловые схемы, типы систем теплопотребления и характеристики используемого оборудования, что зависит от индивидуальных требований Заказчика. Комплектация ТП определяется на основе технических параметров тепловой сети:

  • тепловые нагрузки на сеть
  • температурный режим холодной и горячей воды
  • давление систем тепло- и водоснабжения
  • возможные потери давления
  • климатические условия и т.д.

Виды тепловых пунктов

Вид необходимого теплового пункта зависит от его назначения, количества подводящих теплосистем, количества потребителей, способу размещения и монтажа и выполняемых пунктом функций. В зависимости от вида теплового пункта выбирается его технологическая схема и комплектация.

Тепловые пункты бывают следующих видов:

  • индивидуальные тепловые пункты ИТП
  • центральные тепловые пункты ЦТП
  • блочные тепловые пункты БТП

Открытые и закрытые системы тепловых пунктов. Зависимые и независимые схемы подключения тепловых пунктов

В открытой системе теплоснабжения вода для работы теплового пункта поступает непосредственно из теплосетей. Водозабор может быть полным или частичным. Объем воды, забранный для нужд теплового пункта, восполняется поступлением воды в теплосеть. Следует отметить, что водоподготовка в таких системах осуществляется только на входе в теплосеть. Из-за этого качество воды, поступающей потребителю, оставляет желать лучшего.

Открытые системы, в свою очередь, могут быть зависимыми и независимыми.

В зависимой схеме подключения теплового пункта к тепловой сети теплоноситель из теплосетей попадает непосредственно в систему отопления. Такая система достаточно проста, так как в ней отсутствует необходимость установки дополнительного оборудования. Хотя эта же особенность ведет к существенному недостатку, а, именно, к невозможности регулирования подачи тепла потребителю.

Независимые схемы подключения теплового пункта характеризуются экономической выгодой (до 40%), так как в них между оборудованием конечных потребителей и источником теплоэнергии установлены теплообменники тепловых пунктов, которые регулируют количество подаваемого тепла. Также неоспоримым преимуществом является повышение качества подаваемой воды.

В связи с энергоэффективностью независимых систем многие тепловые компании реконструируют и модернизируют свое оборудование из зависимых систем в независимые.

Закрытая система теплоснабжения является полностью изолированной системой и использует циркулирующую воду в трубопроводе без забора ее из тепловых сетей. Такая система использует воду только в качестве теплоносителя. Утечка теплоносителя возможна, но вода восполняется автоматически при помощи регулятора подпитки.

Количество теплоносителя в закрытой системе остается постоянным, а выработка и распределение тепла потребителю регулируется температурой теплоносителя. Закрытая система характеризуется высоким качеством водоподготовки и высокой энергоэффективностью.

Способы обеспечения потребителей тепловой энергией

По способу обеспечения потребителей тепловой энергией различают одноступенчатые и многоступенчатые тепловые пункты.

Одноступенчатая система характеризуются непосредственным присоединение потребителей к тепловым сетям. Место присоединение называется абонентским вводом. Для каждого объекта теплопотребления должен быть предусмотрен свое технологическое оборудование (подогреватели, элеваторы, насосы, арматура, оборудование КИПиА и др.).

Недостатком одноступенчатой системы подключения является ограничение предела допустимого максимального давления в теплосетях из-за опасности высокого давления для радиаторов отопления. В связи с этим такие системы, в основном, используют для небольшого количества потребителей и для тепловых сетей небольшой длины.

Многоступенчатые системы подключения характеризуются наличием тепловых пунктов между источником тепла и потребителем.

Индивидуальные тепловые пункты

Индивидуальные тепловые пункты обслуживают одного мелкого потребителя (дом, небольшое строение или здание), который уже подключен к системе центрального теплоснабжения. Задача такого ИТП – обеспечение потребителя горячей водой и отоплением (до 40 кВт). Существуют крупные индивидуальные пункты, мощность которых может достигать 2 МВт. Традиционно ИТП размещают в подвале или техническом помещении здания, реже их располагают в отдельно стоящих помещениях. К ИТП подключают только теплоноситель и осуществляют подвод водопроводной воды.

ИТП состоят из двух контуров: первый контур – это контур отопления для поддержания заданной температуры в отапливаемом помещении при помощи датчика температуры; второй контур – это контур горячего водоснабжения.

Центральные тепловые пункты

Центральные тепловые пункты ЦТП применяют для теплообеспечения группы зданий и сооружений. ЦТП выполняют функцию обеспечения потребителей ГВС, ХВС и теплом. Степень автоматизации и диспетчеризации центральных тепловых пунктов (только контроль за параметрами или контроль/управление параметрами ЦТП) определяется Заказчиком и технологическими нуждами. ЦТП могут иметь как зависимую, так и независимую схему подключения к тепловой сети. При зависимой схеме подключения теплоноситель в самом тепловой пункте разделяется на систему отопления и систему горячего водоснабжения. В независимой схеме подключения теплоноситель нагревается во втором контуре теплового пункта поступающей водой из тепловой сети.

Они поставляются на монтажную площадку в полной заводской готовности. На месте последующей эксплуатации осуществляется только подключение к теплосетям и настройка оборудования.

Оборудование центрального теплового пункта (ЦТП) включает в себя следующие элементы:

  • подогреватели (теплообменники) – секционные, многоходовые, блочного типа, пластинчатые – в зависимости от проекта, для горячего водоснабжения, поддерживающие нужную температуру и напор воды у водоразборных точек
  • циркуляционные хозяйственные, противопожарные, отопительные и резервные насосы
  • смесительные устройства
  • тепловые и водомерные узлы
  • контрольно-измерительные приборы КИП и автоматики
  • запорно-регулирующая арматура
  • расширительный мембранный бак

Блочные тепловые пункты (модульные тепловые пункты)

Блочный (модульный) тепловой пункт БТП имеет блочное исполнение. БТП может состоять из более, чем одного блока (модуля), смонтированных, зачастую, на одной объединенной раме. Каждый модуль является независимым и законченным пунктом. При этом регулирование работой общее. Блоснче тепловые пункты могут иметь как локальную систему управления и регулирования, так и дистанционное управление и диспетчеризацию.

В состав блочного теплового пункта могут входить как индивидуальные тепловые пункты, так и центральные тепловые пункты.

Основные системы теплоснабжения потребителей в составе теплового пункта

  • система горячего водоснабжения (открытая или закрытая схема подключения)
  • система отопления (зависимая или независимая схема подключения)
  • система вентиляции

Типовые схемы подключения систем в тепловых пунктах

Типовая схема подключения системы ГВС

Типовая схема подключения системы отопления

Типовая схема подключения системы ГВС и отопления

Типовая схема подключения системы ГВС, отопления и вентиляции

В состав теплового пункта также входит система холодного водоснабжения, но она не является потребителем тепловой энергии.

Принцип работы тепловых пунктов

Тепловая энергия поступает на тепловые пункты от теплогенерирующих предприятий посредством тепловых сетей – первичных магистрельных теплосетей. Вторичные, или разводящие, теплосети соединяют ТП уже с конечным потребителем.

Читайте также:  Как проверить теплый пол мультиметром: варианты поломки, диагностика

Магистральные теплосети обычно имеют большую протяженность, соединяя источник тепла и непосредственно тепловой пункт, и диаметр (до 1400 мм). Зачастую магистральные тепловые сети могут объединять несколько теплогенерирующих предприятий, что увеличивает надежность обеспечения потребителей энергией.

Перед поступление в магистральные сети вода проходит водоподготовку, которая приводит химические показатели воды (жесткость, рН, содержание кислорода, железа) в соответствии с нормативными требованиями. Это необходимо для того, чтобы снижать уровень коррозионного влияния воды на внутреннюю поверхность труб.

Разводящие трубопроводы имеют сравнительно малую протяженность (до 500 м), соединяя тепловой пункт и уже конечного потребителя.

Теплоноситель (холодная вода) поступает по подающему трубопроводу в тепловой пункт, где проходит через насосы системы холодного водоснабжения. Далее он (теплоноситель) использует первичные подогреватели ГВС и подается в циркуляционный контур системы горячего водоснабжения, откуда поступает уже к конечному потребителю и обратно в ТП, постоянно циркулируя. Для поддержания необходимой температуры теплоносителя, он постоянно подогревается в подогревателе второй ступени ГВС.

Система отопления – это такой же замкнутый контур, как и система ГВС. В случае возникновения утечек теплоносителя, его объем восполняется из системы подпитки теплового пункта.

Затем теплоноситель поступает в обратный трубопровод и поступает опять на теплогенерирующее предприятие по магистральным трубопроводам.

Типовая комплектация тепловых пунктов

Для обеспечения надежной эксплуатации тепловых пунктов они поставляются со следующим минимальным технологическим оборудованием:

  • два пластинчатых теплообменника (паяные или разборные) для системы отопления и системы ГВС
  • насосная станция для перекачки теплоносителя к потребителю, а именно – к отопительным приборам здания или сооружения
  • система автоматического регулирования количества и температуры теплоносителя (датчики, контроллеры, расходомеры) для контроля параметров теплоносителя, учета тепловых нагрузок и регулирования расхода
  • система водоподготовки
  • технологическое оборудование – запорная арматура, обратные клапаны, контрольно-измерительные приборы, регуляторы

Следует отметить, что комплектация теплового пункта технологическим оборудованием во многом зависит от схемы подключения системы горячего водоснабжения и схемы подключения системы отопления.

Так, например, в закрытых системах устанавливаются теплообменники, насосы и оборудование водоподготовки для дальнейшего распределения теплоносителя между системой ГВС и системой отопления. А в открытых системах устанавливаются смесительные насосы (для смешения горячей и холодной воды в нужной пропорции) и регуляторы температуры.

Наши специалисты оказывают весь комплекс услуг, начиная с проектирования, производства, поставки, и заканчивая монтажом и пуско-наладкой тепловых пунктов различной комплектации.

05 Декабря 2019 г.

© 2007–2020 «ХК «Газовик». Все права защищены.
Использование материалов сайта без разрешения владельца запрещено и будет преследоваться по закону.

Виды систем отопления

Для того чтобы в холодный зимний период обеспечить в жилом помещении необходимые условия для проживания, нужна система, которая помогала бы поддерживать нужный температурный режим. Система отопления является наиболее удачным инженерным решением данной проблемы. Отопительная система поможет поддерживать в доме комфортные условия на протяжении всего холодного периода, но следует знать, какие бывают системы отопления в современности.

Системы отопления могут различаться в зависимости от разных критериев. Существуют такие основные виды систем отопления, как: воздушное отопление, электрическое отопление, водяное отопление, водяные теплые полы, и другие. Несомненно, важным вопросом является выбор вида системы отопления для своего жилища. Классификация систем отопления включает множество видов. Рассмотрим основные из них, а также проведем сравнение видов топлива для отопления.

Водяное отопление

Среди всей классификации систем отопления наибольшей популярностью пользуется водяное отопление. Технические преимущества такого отопления были выявлены в результате многолетней практики.

Несомненно, на вопрос, какие виды отопления бывают, именно водяное отопление первым приходит на ум. Водяное отопление обладает такими преимуществами, как:

  • Не очень большая температура поверхности различных приборов и труб;
  • Обеспечивает одинаковую температуру во всех помещениях;
  • Экономится топливо;
  • Повышены эксплуатационные сроки;
  • Бесшумная работа;
  • Простота в обслуживании и ремонте.

Главным компонентом системы водяного отопления является котел. Такое устройство необходимо для того чтобы нагревать воду. Вода является в таком виде отопления теплоносителем. Она циркулирует по трубам замкнутого типа, а потом тепло передается в различные отопительные компоненты, а от них уже обогревается все помещение.

Наиболее простым вариантом является циркуляция естественного типа. Такая циркуляция достигается благодаря тому, что в контуре наблюдается разное давление. Однако такая циркуляция может быть и принудительного характера. Для подобной циркуляции водяные варианты отопления должны быть оснащены одним или несколькими насосами.

После того, как теплоноситель проходит по всему контуру отопления, он полностью охлаждается и возвращается назад в котел. Здесь он снова нагревается и, таким образом, снова позволяет отопительным приборам выделять тепло.

Классификация систем водяного отопления

Водяной тип отопления может различаться по таким критериям, как:

  • метод циркуляции воды;
  • расположение магистралей разводящего типа;
  • конструкционные особенности стояков и схема, по которой соединяются все приборы обогрева.

Наибольшую популярность обретает система отопления, где циркуляция воды происходит посредством насоса. Отопление с циркуляцией воды естественного плана в последнее время применяется крайне редко.

В насосной отопительной системе нагрев теплоносителя может иметь место и благодаря водогрейной котельной, или термо воды, которая поступает из ТЭЦ. В отопительной системе вода может нагреваться даже посредством пара.

Прямоточное соединение используют тогда, когда допустима в системе подача воды с очень высокой температурой. Такая система будет стоить не так дорого, расход металла будет несколько меньше.

Минусом прямоточного присоединения считается зависимость теплового режима от «обезличенной» температуры теплоносителя в подающем тепловоде наружного типа.

Воздушное отопление

Такие виды отопления различных помещений считаются одними из самых старых. Впервые подобную систему применяли еще до нашей эры. На сегодняшний день такая отопительная система получила широкое распространение – как в общественных помещениях, так и производственных.

Популярностью для обогрева зданий также пользуется нагретый воздух. При рециркуляции такой воздух может подаваться в помещение, где происходит процесс смешивания с внутренним воздухом и, таким образом, воздух охлаждается до температуры помещения и снова нагревается.

Воздушное отопление может быть местного характера, в случае если в здании нет центральной приточной вентиляции, или же если поступающее количество воздуха меньше, чем необходимо.

В системах воздушного отопления нагревание воздуха происходит за счет калориферов. Первичный отопитель для таких компонентов является горячий пар или вода. Для того чтобы прогреть воздух в помещении, можно использовать и другие приборы для отопления или любые источники тепла.

Местное воздушное отопление

При вопросе, какое бывает отопление, местное отопление часто приравнивается только к производственным помещениям. Приборы местного отопления используются для таких помещений, которые используются лишь в определенные периоды, в помещениях вспомогательного характера, в помещениях, которые сообщаются с наружными воздушными потоками.

Главными приборами системы местного отопления являются вентилятор и нагревательный прибор. Для воздушного отопления могут применяться такие устройства и приборы, как: воздушно-отопительные устройства, тепловые вентиляторы или тепловые пушки. Такие приборы работают на принципе воздушной рециркуляции.

Центральное воздушное отопление

Центральное воздушное отопление делается в помещениях любого плана, если здание располагает центральной системой вентиляции. Такие типы систем отопления можно организовать по трем различным схемам: с прямоточной рециркуляцией, с частичной или полной рециркуляцией. Полная рециркуляция воздуха может использоваться, в основном, в нерабочие часы для дежурных видов отопления, или для того чтобы обогреть помещение перед началом рабочего дня.

Однако отопление по такой схеме может иметь место, если оно не противоречит никаким правилам противопожарной безопасности или основным требованиям гигиены. Для такой отопительной схемы должна быть использована система приточной вентиляции, но воздух будет забираться не с улицы, а с тех помещений, которые отапливаются. В центральной воздушной отопительной системе применяются такие конструктивные виды приборов отопления, как: радиаторы, вентилятор, фильтры, воздуховоды и другие приборы.

Воздушные занавесы

Холодный воздух может поступать в большом количестве с улицы, если в доме слишком часто открываются входные двери. Если не предпринять ничего для того чтобы ограничить количество холодного воздуха, который проникает в помещение, или не обогревать его, то он может негативно сказаться на температурном режиме, который должен соответствовать норме. Чтобы предотвратить данную проблему, можно в открытом дверном проеме создать воздушный занавес.

Во входах зданий жилого или офисного плана можно установить низкорослый воздушно-тепловой занавес.

Ограничить количество поступающего холодного воздуха снаружи здания имеет место благодаря конструктивным изменением входа в помещение.

Все большей популярностью в последнее время пользуются воздушно-тепловые занавесы компактного типа. Самыми эффективными занавесами считаются занавесы «щиберующего» вида. Такие занавесы создают струйную воздушную преграду, которая защитит открытый дверной проем от проникновения холодных воздушных потоков. Как показывает сравнение видов отопления, такой занавес позволяет сократить потери тепла почти в два раза.

Электрическое отопление

Нагрев помещения имеет место благодаря распределению воздуха, проходящего через приборную панель без того, чтобы нагревалась ее лицевая сторона. Это полностью обезопасит от различных ожогов и предотвратит любое возгорание.

Посредством электрических конвекторов можно обогреть любой тип помещения, даже если у вас имеется всего один источник энергии, такой как электричество.

Такие виды систем отопления зданий не требуют больших затрат для установки или ремонта, к тому же, могут обеспечить максимальный комфорт. Электрический конвектор можно просто поставить в определенное место и подключить его к питанию сети. Делая выбор системы отопления, можно обратить внимание на данный тип – довольно эффективный.

Принцип действия

Холодный воздух, который находится в нижней части здания, проходит через нагревательный компонент конвектора. Затем его объем увеличивается и он уходит вверх через выходные решетки. Обогревательный эффект имеет место и благодаря дополнительному излучению тепла с передней стороны панели электрического конвектора.

Уровень комфорта и экономичность такой обогревательной системы достигается благодаря тому, что в электрических конвекторах применяется электронная система, которая помогает поддерживать определенную температуру. Нужно всего-навсего установить необходимый температурный показатель и датчик, который установлен в нижней области панели начнет через заданный период времени определять температуру воздуха, который проникает в помещение. Датчик подаст сигнал на термостат, который в свою очередь подключит или наоборот выключит обогревательный элемент. Посредством такой системы для поддержания определенной температуры, которая даст возможность соединить электрические конвекторы в разных помещениях, для того чтобы обогреть целое здание.

Какая система лучше

Конечно же, вопрос какая система отопления лучше является нецелесообразным, так как та или иная система является эффективной в определенных условиях. Сравнение систем отопления следует производить, учитывая все их плюсы и минусы, ориентируясь на условия установки и собственные возможности.

Рассмотрев, какие системы отопления существуют, можно сделать для себя определенные выводы. Но в целом, лучшим вариантом станет посоветоваться с профессионалами.

Тепловой пункт

Тепловой пункт Вы можете заказать с монтажом “под ключ”, позвонив по телефону в Москве: . Осуществляем проектирование и поставку систем отопления по России.

  • Принцип работы тепловых пунктов
  • Типы тепловых пунктов
  • Виды и особенности тепловых пунктов
  • Преимущества установки тепловых пунктов в системе теплоснабжения потребителей
  • Принципиальная схема теплового пункта
  • Тепловые пункты промышленных предприятий
  • Этапы монтажа тепловых пунктов (ИТП, ЦТП)
  • Видео Блочный тепловой пункт

Отправьте быструю заявку

Теплопунктами называются автоматизированные комплексы, передающие тепловую энергию между внешними и внутренними сетями . Они состоят из теплового оборудования, а также измеряющих и контролирующих приборов.

Назначение тепловых пунктов:

  • преобразование вида теплоносителя или его параметров;
  • контроль параметров теплоносителя;
  • учет тепловых нагрузок, расходов теплоносителя и конденсата;
  • регулирование расхода теплоносителя и распределение по системам потребления теплоты (через распределительные сети в ЦТП или непосредственно в системы ИТП);
  • защита местных систем от аварийного повышения параметров теплоносителя;
  • заполнение и подпитка систем потребления теплоты;
  • сбор, охлаждение, возврат конденсата и контроль его качества;
  • аккумулирование теплоты;
  • водоподготовка для систем горячего водоснабжения.

В тепловом пункте в зависимости от его назначения и местных условий могут осуществляться все перечисленные мероприятия или только их часть. Приборы контроля параметров теплоносителя и учета расхода теплоты следует предусматривать во всех тепловых пунктах.

Устройство ИТП ввода обязательно для каждого здания независимо от наличия ЦТП, при этом в ИТП предусматриваются только те мероприятия, которые необходимы для присоединения данного здания и не предусмотрены в ЦТП.

В закрытых и открытых системах теплоснабжения необходимость устройства ЦТП для жилых и общественных зданий должна быть обоснована технико-экономическим расчетом.

“Инвест Строй” – профессиональная климатическая компания, готовая реализовать решения любых задач по климатическому и другому инженерному оборудованию “под ключ”. Выполним полный цикл работ: подбор оборудования, проектирование, монтаж, поставка и обслуживание.

Звоните сейчас: . Отправьте заявку

Принцип работы тепловых пунктов

Тепловая энергия поступает на тепловые пункты от теплогенерирующих предприятий посредством тепловых сетей – первичных магистрельных теплосетей. Вторичные, или разводящие, теплосети соединяют ТП уже с конечным потребителем.

Магистральные теплосети обычно имеют большую протяженность, соединяя источник тепла и непосредственно тепловой пункт, и диаметр (до 1400 мм). Зачастую магистральные тепловые сети могут объединять несколько теплогенерирующих предприятий, что увеличивает надежность обеспечения потребителей энергией.

Перед поступление в магистральные сети вода проходит водоподготовку, которая приводит химические показатели воды (жесткость, рН, содержание кислорода, железа) в соответствии с нормативными требованиями. Это необходимо для того, чтобы снижать уровень коррозионного влияния воды на внутреннюю поверхность труб.

Разводящие трубопроводы имеют сравнительно малую протяженность (до 500 м), соединяя тепловой пункт и уже конечного потребителя.

Теплоноситель (холодная вода) поступает по подающему трубопроводу в тепловой пункт, где проходит через насосы системы холодного водоснабжения. Далее он (теплоноситель) использует первичные подогреватели ГВС и подается в циркуляционный контур системы горячего водоснабжения, откуда поступает уже к конечному потребителю и обратно в ТП, постоянно циркулируя. Для поддержания необходимой температуры теплоносителя, он постоянно подогревается в подогревателе второй ступени ГВС.

Система отопления – это такой же замкнутый контур, как и система ГВС. В случае возникновения утечек теплоносителя, его объем восполняется из системы подпитки теплового пункта.

Затем теплоноситель поступает в обратный трубопровод и поступает опять на теплогенерирующее предприятие по магистральным трубопроводам.

Типы тепловых пунктов

Тепловые пункты различаются по типу и количеству подключений, по способам размещения (непосредственно в здании или отдельно), и таким образом делятся на несколько типов:

  • центральный тепловой пункт (ЦТП);
  • индивидуальный тепловой пункт (ИТП);
  • модульный (или блочный) тепловой пункт (БТП) — созданная на одной раме конструкция, может применяться для ИТП или ЦТП.

Виды и особенности тепловых пунктов:

Индивидуальный тепловой пункт (ИТП или автоматизированный АИТП)

Эти устройства способны обслуживать, как целое здание, так и отдельные его части. Предназначены для обеспечения энергоресурсами (теплом, горячей водой) и вентиляцией жилые и производственные комплексы любого типа.

ИТП монтируются для обслуживания многоквартирных домов и больших промышленных/производственных зданиий. Имеют мощность 50кВт-2МВт.

  • строго дозируется поступление энергоносителей в помещение, что позволяет сэкономить до 15% от общих расходов на отопление (ведется учет);
  • автоматически поддерживается заданная температура в помещении, давление воды, теплоносителей и наружного воздуха;
  • уменьшается длина трубопровода и соответственно затраты на его покупку и укладку.

Центральный тепловой пункт (ЦТП)

Предназначен для круглогодичного обеспечения теплом и горячей водой нескольких совмещенных зданий. Включает в себя следующие установки:

  • теплообменник (подбирается индивидуально для каждого проекта);
  • насосы (отопительный, циркуляционный и противопожарный);
  • механические счетчики тепла и воды;
  • электронные измерительные приборы (КИП) и запорно-регулирующую арматуру.

Блочный/модульный тепловой пункт (БТП и МТП)

Представляет собой сложное заводское изделие, при помощи которого в самые сжатые сроки подсоединяется к теплосетям реконструируемых или новых зданий.

Преимущества: БТП и МТП уже оснащены всем необходимым для выполнения своих задач, являются полностью автоматизированными установками, компактны, просты в монтаже и помогают сэкономить до 20-30% тепла.

Устанавливая тепловой пункт, Вы получаете:

  • полностью автоматизированную установку, работающую абсолютно бесшумно;
  • снижение затрат на оплату теплоносителя, электроэнергии, обслуживающий персонал (ТП не нуждаются в постоянном контроле работы), ремонт и плановое обслуживание (эксплуатационные затраты снижаются на 50-60%);
  • оборудование, которое можно установить даже в условиях ограниченного пространства (к примеру, в подвальном помещении);
  • быстрый монтаж (осуществляется путем подсоединения только к внешним проводам).

Вы тоже хотите экономить на энергоресурсах и максимально эффективно ими пользоваться? Мы всегда готовы предоставить Вам бесплатную консультацию и помощь в вопросах выбора и особенностей теплового оборудования, а также разработаем и воплотим в жизнь даже самый сложный проект по инсталляции теплового пункта (АТП, ЦТП, ИТП, БТП, МТП) в любое здание или комплекс сооружений.

Преимущества установки тепловых пунктов в системе теплоснабжения потребителей

Среди преимуществ тепловых пунктов можно назвать следующие:

  • минимизация тепловых потерь
  • сравнительно низкие эксплуатационные затраты, экономичность
  • возможность выбора режима теплоснабжения и теплопотребления в зависимости от времени суток и сезона
  • бесшумная работа, малые габариты (по сравнению с другим оборудованием системы теплообеспечения)
  • автоматизация и диспетчеризация процесса эксплуатации
  • возможность изготовления по индивидуальному заказу

Тепловые пункты могут иметь разные тепловые схемы, типы систем теплопотребления и характеристики используемого оборудования, что зависит от индивидуальных требований Заказчика. Комплектация ТП определяется на основе технических параметров тепловой сети:

  • тепловые нагрузки на сеть
  • температурный режим холодной и горячей воды
  • давление систем тепло- и водоснабжения
  • возможные потери давления
  • климатические условия и т.д.

Принципиальная схема теплового пункта

Схема теплового пункта зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Тепловые пункты промышленных предприятий

Промышленное предприятие должно, как правило, иметь один центральный тепловой пункт (ЦТП) для регистрации, учета и распределения теплоносителя, получаемого из тепловой сети. Количество и размещение вторичных (цеховых) тепловых пунктов (ИТП) определяется размерами и взаимным размещением отдельных цехов предприятия. ЦТП предприятия должен быть размещен в отдельном помещении; на крупных предприятиях, особенно при получении кроме горячей воды также и пара, – в самостоятельном здании.

Предприятие может иметь цехи как с однородным характером внутренних тепловыделений (удельный вес в общей нагрузке), так и с разным. В первом случае температурный режим всех зданий определяется в ЦТП, во втором – различным и устанавливаться на ИТП. Температурный график для промышленных предприятий должен отличаться от бытового, по которому обычно работают городские теплосети. Для подгонки температурного режима в тепловых пунктах предприятий должны устанавливаться смесительные насосы, которые при единообразии характера тепловыделений по цехам могут быть установлены в одном ЦТП, при отсутствии единообразия – в ИТП.

Проектирование тепловых систем промышленных предприятий должно проводиться с обязательным использованием вторичных энергоресурсов, под которыми понимаются:

  • отходящие от печей горячие газы;
  • продукты технологических процессов (нагретые слитки, шлаки, раскаленный кокс и пр.);
  • низкотемпературные энергоресурсы в виде отработавшего пара, горячей воды от различных охлаждающих устройств и производственные тепловыделения.

Для теплоснабжения обычно используются энергоресурсы третьей группы, которые имеют температуры в пределах от 40 до 130°С. Предпочтительным является их использование для нужд ГВС, поскольку эта нагрузка имеет круглогодичный характер.

При большой рассредоточенности цехов по территории предприятия желательно иметь систему диспетчерского контроля за параметрами сетевой воды в узловых точках тепловой сети и цеховых ИТП, что особенно необходимо при переменном характере тепловых нагрузок в течение суток, связанного со сменностью работы предприятий.

Этапы монтажа тепловых пунктов (ИТП, ЦТП)

Узел ввода

При монтаже ИТП или ЦТП в первую очередь нужно оборудовать узел ввода, обеспечивающий распределение теплоносителя (как правило, воды) из теплосети между остальными узлами теплового пункта. Узел ввода оснащается запорной арматурой (шаровыми кранами), а так же сетчатым фильтром. В закрытых системах сетчатый фильтр монтируется только на подающем трубопроводе, а в открытых – на подающем и обратном. Для защиты сетчатого фильтра от повреждения перед ним допустима установка грязевика.

Узел учета

После завершения монтажа узла ввода на него устанавливается прибор учета тепловой энергии потребляемой абонентами или как его еще называют узел учета. Узел учета является обязательной частью оборудования ТП. На основании данных полученных от расходомеров и преобразователей прибор учета рассчитывает теплопотребление. Величина теплопотребления используется как для расчетов с поставщиком теплоснабжения, так и для управления тепловыми системами потребителей (например, для автоматического ограничения теплопотребления).

Узел согласования давления

Следующим этапом монтажа ТП является установка узла согласования давления. Оборудование узла выполняет ряд функций обеспечивающих стабильную работу как самого теплового пункта, так и систем отопления и горячего водоснабжения обслуживаемых объектов. Основной задачей данного узла является поддержание давления в различных системах и коммуникациях на необходимом уровне, а так же предотвращение аварий, возникающих из-за перепадов давления.

После того как произведен монтаж оборудования перечисленного выше можно приступать к установке узлов подключения инженерных систем

Узел подключения горячего водоснабжения

Существуют два основных способа приготовления воды для ГВС – открытый и закрытый, в зависимости от выбранного способа в ТП монтируют соответствующее оборудование.

При закрытой схеме для нагрева водопроводной воды в тепловом пункте устанавливают скоростные водоподогреватели представляющие собой трубчатые или пластинчатые теплообменники.

При открытом способе, вода из теплосети поступает непосредственно в систему горячего водоснабжения. Для того чтобы температура воды в системе соответствовала принятым санитарным нормам в ИТП или ЦТП монтируют специальное оборудование предназначенное для смешивания воды из подающего и обратного трубопровода – трехходовой смесительные клапан либо проходной регулирующий клапан.

Выбор того или иного способа зависит от принятой в районе строительства схемы теплоснабжения.

Узел подключения отопительной системы

В зависимости от типа подключения в ТП производят монтаж различного оборудования.

Зависимое подключение системы отопления более простое, так как устанавливается меньше оборудования. При данном типе подключения основным элементом узла будет насос обеспечивающий автоматизацию и возможность использования в системе радиаторов с терморегуляторами. Преимуществом данной схемы является простота монтажа и невысокая стоимость оборудования, а так же сохранение отопления при отключении электроэнергии за счет давления в тепловой сети.

При независимой схеме подключения сетевая вода подается в теплообменник, в котором происходит нагрев теплоносителя для отопительной системы. В этом случае система отопления представляет собой отдельный контур, не подсоединенный напрямую к теплосети. Для того чтобы обеспечить циркуляцию теплоносителя в закрытом контуре в тепловом пункте устанавливают циркуляционный насос. Управление температурой при независимом типе подключения осуществляется за счет изменения расхода воды из теплосети через теплообменник. Преимуществами данного типа подключения является защищенность системы отопления от загрязнений присутствующих в воде из тепловой сети и скачков давления. Недостатком является зависимость от электричества, большое количество оборудования которое необходимо установить (теплообменник, циркуляционный насос) и его цена.

Узел подпитки

Если проектом ТП предусмотрена независимая схема монтажа отопительной системы необходимо будет произвести монтаж узла подпитки. Оборудование узла подпитки – это расширительные баки обеспечивающие компенсацию колебаний объема теплоносителя при его нагреве и охлаждении.

Системы автоматики и диспетчеризации

Последним этапом монтажных работ в ИТП/ЦТП является установка устройств автоматизации и диспетчеризации

Электронные устройства автоматики позволяют контролировать различные параметры работы ТП и управлять всеми приборами и узлами теплового пункта. Зачет встроенных модулей связи можно объединять контролирующие и управляющие устройства в сеть. Это дает возможность внедрять любые алгоритмы работы ТП, например, автоматически изменять температуру теплоносителя в системе отопления в зависимости от температуры воздуха на улице, ограничивать поступление теплоносителя по сигналу прибора учета, автоматически поддерживать давление в системе на заданном уровне и многое другое.

Монтаж системы диспетчеризации в ИТП и ЦТП позволяет осуществлять удаленный контроль и управление работой теплового пункта посредством ЛВС или Интернет.

Видео: Блочный тепловой пункт

Ссылка на основную публикацию
Программирование сайта —
Сайтмедиа