Система отопления Тихельмана: схема подключения, плюсы и минусы, монтаж

Петля Тихельмана — надежное отопление для больших домов, как сделать

Прошли уже те времена, когда монтировались самотечные и однотрубные системы, с использованием стальных труб большого диаметра. Сейчас такие варианты оказалась бы слишком дорогие, по сравнению с современными двухтрубными, а также менее эффективными и стабильными.

Петля Тихельмана — одна из самых широко применяемых в частных домах схем отопления.
Ей свойственны устойчивость работы и равномерный прогрев всех радиаторов, — обеспечиваются главные требования, предъявляемые к системам отопления в частных домах.

Схема петля Тихельмана

Эту схему подключения отопительных приборов называют еще попутной. В ней обеспечивается следующее:

  • Для каждого радиатора сумма длин подачи и обрати одинаковая.
  • Гидравлические условия для каждого радиатора в системе одинаковые.

Если гидравлические сопротивления радиаторов равны, то через них пройдет равное количество теплоносителя с одинаковой температурой, соответственно, их тепловая мощность будет примерно равна.

Режимы работы не одинаковых радиаторов, или установленных в отдалении от магистрали, или установленных выше/ниже, в нишах…можно отрегулировать с помощью балансировочных кранов на отводах.

Подача заканчивается на последнем радиаторе, обратка начинается от первого радиатора.

Где применяется

Еще одна широко распространенная схеме отопления – тупиковая. В ней ближний к котлу радиатор будет прогреваться сильнее, а последний радиатор в тупике получит теплоносителя меньше других.
Тупиковая схема приведена на рисунке.

Для тупиковой схемы количество радиаторов в каждом плече ограничено.

Петля Тихельмана может включать в себя значительно большее количество радиаторов, чем плечо (или два плеча) тупиковой схемы. И применяться для отопления больших площадей.

Фактически петлю Тихельмана возможно применить и для отопления наибольшей площади одного этажа частного дома.

Как известно тупиковая схема без особых проблем балансируется, и работает удовлетворительно (разница мощностей радиаторов без балансировки не превышает 10%) если количество радиаторов в плече не превышает 5 шт. Соответственно на 2 плеча — до 10 шт. Свыше этого количества — область применения попутной схемы.

Можно ли петлю Тихельмана применить в небольших домах?
Можно применить даже для одного радиатора. Но скорее всего это будет сделать проблематично и (или) не экономично. У этой схемы свои недостатки.

Недостатки

Включение большого количества радиаторов в кольцо Петли Тихельмана влечет увеличение диаметра трубопроводов.

Прокладка большого диаметра по кольцу влечет увеличение денежных затрат. Попытка уменьшать диамметры (только на конечных участках кольца требуется максимальный расход) в целом не благодарное занятие. Так как гидравлические условия подключения радиаторов станут разными, систему будет сложно настроить. Как правило по кольцу применяются одинаковый большой диаметр и на подаче и на обратке. Но в принципе уменьшение диаметров труб к середине возможна, при условии если длина участки с одинаковым диаметром и подачи и обратки будет примерно равна.

Тупиковая схема, у которой подача и обратка на последний радиатор могут быть минимального диаметра, – выгодней.

Второй главный недостаток связан с необходимостью обходить трубами здание по периметру вдоль наружных стен и возвращаться к котлу. Почти везде это сделать не просто — мешают двери, высокие окна, лестничные хода и другое.

Возвращать же обратку большим диаметром по направлению назад, т.е. фактически прокладывать три трубы – не выгодно.

В больших по площадях домах, где не был выполнен должны образом проект отопления, приходится заниматься «конструированием», совмещением различных схем, обратной протяжкой трубопроводов, чтобы обеспечить качественным радиаторным обогревом все закутки.

В небольших домах в основном проще, выгодней проложить трубопроводы по стенам по тупиковой схеме.
Современные проекты предусматривают особенные решения…

Петля Тихельмана в современных больших домах

В современном дизайне частных домов не редко встречаются дополнительные двери на террасу, в сад, в неотапливаемые помещения, а также высокие окна до самого пола. Навеска труб на стены считается неприемлемой, элементом интерьера не соответствующим современным представлениям.

В основном предусматривается прокладка отопительного трубопровода под напольным покрытием в тоннелях, одетым в теплоизоляционные оболочки, чтобы не разрушать конструкции перегревом.

Полы делаются либо на лагах, либо укладывается толстая стяжка (теплый пол). Применяется в основном гибкий трубопровод, уголковые фитинги не используются.

В современных домах петля Тихельмана лишается своего главного недостатка — сложности прокладки замкнутого круга на распределитель. Может легко использоваться в небольших и больших площадях, при прокладке под полом.

В последнее время все чаще используются внутрипольные конвектора под высокими окнами. Петля Тихельмана окажется подходящей схемой для подключения конвекторов, более экономичной и устойчивой по сравнению с лучевой схемой при большом количестве (более 4 шт.) отопительных приборов.

Трубы, насосы для попутной схемы

Частные дома всегда сжатой компоновки, длинные магистрали к отопительным приборам отсутствуют, — повышенное гидравлическое сопротивление в схемах не встречается.

Рекомендации делать расчеты системы отопления излишни, так как точные теплопотери здания самостоятельно установить не удастся, а применяемое оборудование стандартно, остается лишь выбрать из пары-тройки образцов подходящее.

Для определения диаметра труб для петли Тихельмана можно воспользоваться табличными данными, зависимости диаметра от необходимой энергии.

При теплопотерях до 15 кВт (150 м кв.) площади подходящими окажутся трубы с внутренним диаметром 20 мм. Они же и используются для основных магистралей в большинстве случаев, — примерно до 8 радиаторов в кольце.

При теплопотерях от 15 до 27 кВт (до 250 м кв. площади) – нужно на магистралях применить трубы 25 мм, чтобы в дальнейшем экономичней оказалась работа насоса.

Диаметр трубопровода в петле можно уменьшить в соответствии с расчетом. И с условием указанным выше. Во всяком случае, к последнему радиатору по подаче прокладывается минимальный диаметр – 16 мм.

Все радиаторы подключаются отводками с внутренним диаметром 16мм.

Для отапливаемой площади до 180 м кв. можно применять насос 25- 40, до площади 250 м кв. — насос 25-60.

Отлично для петли Тихельмана подходят новые современные циркуляционные насосы типа Альфа, о которых можно прочитать ЗДЕСЬ

Для двухэтажного дома

Целесообразно делать общий стояк и прокладывать отдельное кольцо петли Тихельмана для каждого этажа. Важно учитывать, что энергопотери для каждого этажа будут значительно отличаться, в соответствии с этим и производится подбор радиаторов, а также диаметра труб.

Раздельные схемы в этажах позволят балансировать один этаж относительно другого и значительно упростят настройку системы. Важно лишь не забыть включить в контур попутки для каждого этажа балансировочный кран. Если этажей 2, то эти краны могут находиться рядом в котельной.

Как подключается теплый пол к Петле Тихельмана

Теплый пол подключается параллельно к попутной схеме, в пределах каждого этажа. При этом балансировочные краны радиаторной схемы на каждом этаж не должны влиять на работу теплого пола. Т.е. по схеме краны должны находиться дальше от котла, чем включение теплого пола.

Контур теплого пола со смесительным узлом обязательно снабжается своим циркуляционным насосом. Короткие контура с регулировкой ограничителями потока подключаются без дополнительного насоса, но учитываться в расчетах общей гидравлической схемы. Так как, скорее всего, понадобиться более мощный насос из-за увеличения общего расхода.

Петля Тихельмана своими руками

При монтаже системы отопления нужно не забыть вопросы слива жидкости и возможности завоздушивания.
Поэтому делать обход трубопроводом дверного проема в принципе можно, но нужно не забыть поставить воздухоотводчик в высшей точке и обеспечить слив с нижней.

В целом же не редкость, когда делают более длинные тупиковые схемы, чтобы не связываться с перепадами высоты на которые вынуждает Петля Тихельмана.

Также стоит усомниться в качестве полипропиленовой пайки, и возможно взяться за металлопласстик, как делается качественное соединение металлопластиком читайте ЗДЕСЬ

При монтаже нужно не забыть главные правила:

  • защиту твердотопливого котла от холодной обратке – как сделать
  • установку гидроаккумулятора в систему отопления, который предстоит выбрать

А также многое другое.

Нужно не забыть, что петля Тихельмана – в общем-то «нежная» схема по неравенству гидравлических сопротивлений радиаторов, поэтому все радиаторы снабжаются на обратке настроечными кранами. Подробней о подключении радиаторов можно узнать, как делается

Схема Тихельмана

В этой статье рассмотрим проектирование системы отопления, если в качестве обвязки радиаторов выбрана схема Тихельмана (попутно-перехлёстывающая), о которой уже упоминалось в одной из предыдущих статей. Отдельная статья этой схеме посвящена из-за её (схемы, а не статьи) достоинств.

Устройство разводки по схеме Тихельмана

Напомню: схема Тихельмана выглядит примерно так:

Основные же достоинства схемы Тихельмана: универсальность, хорошая регулируемость (каждый радиатор можно отрегулировать отдельно).

Все радиаторы работают практически в одинаковых условиях по расходу теплоносителя и перепаду давления, при равных площадях поверхностей они имеют и равную теплоотдачу.

Не смотря на кажущуюся сложность, эта сложность… всего лишь кажущаяся. Нужно просто немного попрактиковаться рисовать такие схемы на планах.

Как обойти дверь при устройстве системы отопления по схеме Тихельмана?

Как поступать, если при монтаже по схеме Тихельмана встречается какое-нибудь препятствие? К примеру, дверь:

И не только при монтаже трубопровода по схеме Тихельмана, но и по любой другой схеме.

Есть несколько вариантов.

Здесь дверь обходится трубой сверху.

Важно! На участке над дверью нужно ставить обязательно автоматический воздухоотводчик, чтобы не накапливался воздух.

Минус: внешний вид помещения будет ещё тот; особенно если это жилая комната, а не прихожая. Да, автоматический воздухоотводчик имеет свойство время от времени подтекать, что тоже не приятно.

Проходим под дверью. То есть труба идёт ниже уровня пола. А есть ли такая возможность? Не всегда: может быть, пол уже сделан, а может, там такая стяжка, что не продолбишь…

«Нормальные герои всегда идут в обход…». Вот и нам можно обойти комнату в обратном направлении:

А почему бы и нет?

Схема Тихельмана для обвязки радиаторов двух этажей

Такой вариант изображён на рисунке:

Причём, здесь не каждый этаж по отдельности завязан по схеме Тихельмана, а вся система. Основные трубы (подача и обратка) – металлопластиковые диаметром 20 мм, к ним радиаторы подключены трубой 16 мм.

Схема Тихельмана для обвязки радиаторов трёх этажей

Здесь тоже не на каждом этаже по отдельности своя обвязка, а одна обвязка, выполненная по схеме Тихельмана для одновременно всех трёх этажей. Стояки выполнены, например, металлопластиковой трубой диаметром 26 мм, подача и обратка на этажах диаметром 20 мм, а к радиаторам отводы трубой 16 мм.

И всё же! Если есть возможность, то лучше подключать каждый этаж отдельно и со своим насосом, иначе, если насос один на все этажи, то при выходе насоса из строя отопления не будет на всех этажах сразу.

Итак, сделаем выводы.

Схема Тихельмана имеет преимущества по сравнению с другими схемами обвязки радиаторов: 1) универсальность (подходит для любых помещений, планировок и т. д., в том числе больших площадей); 2) все радиаторы прогреваются равномерно. Не смотря на внешнюю сложность, освоить монтаж отопления по этой схеме вполне доступно. Только прочитайте ещё раз о диаметрах труб при такой разводке. И – пользуйтесь. Успехов.

Схема петли Тихельмана: что такое, какое у нее устройство и из чего состоит

Монтаж отопления в доме требует основательного подхода в выборе материалов, котлов, видов топлива, схемы подключения. Отличный вариант установки линии обогрева – по схеме Тихельмана которую мы рассмотрим.

Устройство

Что это такое?

Это двухтрубная система подключения при попутном течении теплоносителя.

При прямой схеме в начале проводки устанавливается расширительный бак, котел, кран Маевского и грязевик. Далее идут две линии труб, одна из которых направляет горячий теплоноситель, а вторая возвращает его уже остывшим обратно к нагревательному элементу.

Внутри такой системы каждый радиатор — шунт, с повышением внутреннего гидравлического сопротивления по мере удаления батареи.

При круговом замыкании оба края примыкают к котельной. Тогда лучше возвратную трубу направить не напрямую к нагревательному элементу, а выделить для нее отдельную линию. То есть, сделать трехтрубную систему, поместив отток охлажденной жидкости попутно подаче горячей влаги.

Читайте также:  Смета системы отопления на: монтаж, опрессовку, промывку, ремонт

Нагревательный трубопровод выходит из котельной, завершается на последнем радиаторе, а обратная линия идет от первой батареи к котлу.

Наибольшая эффективность работы такой системы наблюдается при одноэтажной зонированности. Но иногда мастера рекомендуют оборудовать так только большие строения. Выгода от установки выявляется тогда, когда одно «плечо» отопительной системы содержит не менее 6 единиц радиаторов.

Обустраивая обогрев коттеджей не обязательно делать выделенные отопительные контуры для каждого этажа: здание тонкое, будет достаточно единой системы.

Иногда вариант Тихельмана ошибочно называют «трехтрубной системой». Но трубопровода всего два, просто одна линия идет на подачу, вторая на возврат. При прямой развертке нижняя линия возврата прокладывается вдоль остальных стен, чтобы обеспечить течение теплопроводной жидкости.

Подробнее принцип проведения и работы системы показаны в следующем видео:

Плюсы и минусы

Схема решает проблему того, что при двухтрубной прокладке последняя батарея прогревается хуже всего из-за недостатка внутреннего гидравлического давления. Благодаря особенностям петли, ее можно использовать, как обычную обогревательную вариацию, так и для кондиционирования комнат.

Простое устройство облегчает сборку. Исключение – установка обратного потока от первой радиаторной батареи до последнего, только потом жидкость возвращается обратно к котлу.

Попутное и тупиковое направление

Петля – это полностью сбалансированный вариант обогрева, не требующий дополнительной регулировки. Это помогает сэкономить на монтаже дополнительных регулирующих агрегатов.

Сила потока теплоносителя внутри всех труб сохраняется одинаковой, а котел выдает максимальный уровень КПД.

Популярный способ отопления для, привыкших к «ленинградке», тупиковой разводке двухтрубной прокладки линий.

С другой стороны, требуется больше расходных материалов, что увеличит расходы.

Пример расчетов расхода материалов

Не каждый дом подлежит оборудованию отопительной разверткой, так как архитектурные особенности могут помешать нормальному устройству трехтрубной системы. Часто формируется горизонтальное направление ветви, но иногда удобнее вертикаль.

Для сооружения трубопровода используются магистрали большого сечения, при чем, все должны быть одного диаметра.

При большом количестве выступов, ниш, дверей или окон монтаж петли практически невозможен.

Где применяется?

Ввиду требования к повышенному количеству материалов для двухтрубной линии применение петли не всегда требуется.

Возможно немного уменьшить расход сырья, если отопление замкнуть в кольцо, чему могут препятствовать дверные проемы, удлиненные до пола оконные проемы.

Для двухэтажного или трехэтажного дома отопление оборудуется с интеграцией в насосную систему повышенной производительности. Но такой агрегат сильно шумит, поэтому нужно сделать шумоизоляцию котельной.

Применение двухтрубной отопительной линии с попутным потоком теплоносителя при полной протяженности теплопровода 70 метров или больше, при том, что в системе не менее 10 радиаторов.

Такой вид обогрева с успехом применяется в просторных частных домах, магазинах, офисах, гостиницах, внутри квартир с индивидуальной системой.

Схема устройства

Основной отопительный элемент – гидравлический насос, всегда оборудуется общий стояк, но на каждый этаж укладывается отдельная петля.

Суть работы петли в том, что первый радиатор подачи – последнее звено на возврате. От него остывший теплоноситель возвращается в котел.

Особенность в том, что сопротивление, поток внутри труб одинаковый. При всем прочем, вычисляется протяженность трубопровода целиком и каждой составляющей трубы в отдельности. Короткая часть подачи теплопровода обозначает удлиненную трубу возврата.

Каждый уровень дома имеет свой коэффициент теплопотери, поэтому высчитывают этот параметр отдельно для каждого из них.

Система разделения дает возможность выполнить балансировку поэтажно, упрощая процедуру настройки петли.

На каждом уровне строения должны быть предусмотрены отдельные балансировочные краны. Внутри двухэтажек допускается их установка в котельном помещении.

Выполнение петли котла

Двухтрубное отопление бывает закрытого и открытого типа.

Выход подающей трубы оснащается предохранительным клапаном, манометром и автоматическим воздухоотводчиком.

Открытый тип обогрева снабжается подающим трубопроводом в форме вертикального канала, верхняя точка которого оборудуется расширительным баком. От него линия переходит в разводящую сеть.

Линия обратки оснащается циркуляционным насосом, производительность которого высчитывается с учетом степени гидравлического сопротивления. Перед насосной частью устанавливается фильтр для грубой очистки. После нее – тройник, присоединяющий разводку к расширителю. Сразу ставят манометр для определения давления в нижней точке.

Пример петли

Запорная арматура – шаровые краны, имеющие полный проход. Их устанавливают по обеим сторонам насоса, на заправочный патрубок, отвод расширителя, в точках подключения котла к общему контуру.

Чтобы предотвратить внезапное отключение насоса, на байпас монтируют закрытый клапан, автоматически срабатывающий при остановке теплоносителя. Когда у разных контуров различная производительность, требуется монтаж гидрострелки.

Трубопровод

Обогрев подключается через трубы, сечение которых высчитывают, основываясь сразу на двух параметрах – площадь помещения и степень его теплопотери.

Потери тепла до 15 кВт, если размер комнаты 150 кв м. Потребуется прокладка линий, диаметром не менее 2 см и насосное оборудование 25-40.

При параметрах от 15 до 27 кВт и габаритах до 250 кв. м, нужны трубы с сечением 2,5 см. применяется насосная станция 25-60.

Примерная таблица вычисления сечения

Во время вычисления диаметр труб, может быть уменьшен, если таковое требуется. Главное помнить о том, что подающая часть должна иметь сечение не менее 1,6 см.

Арматурные элементы

Чтобы радиаторы исправно работали, их оснащают регулировочной арматурой. Благодаря этому становится возможной регулировка внутри отдельных помещений.

Выровнять перепады давления возможно, если каждый из установленных радиаторов имеет разное количество секций, что потребует точных расчетов. В итоге их должно быть достаточно для нужной степени прогрева.

Расположение арматуры в системе

На случай появления ошибки рекомендуется поставить на оборудование регулировочные клапаны, что особенно касается первых радиаторов с каждой стороны подключения.

Балансировка может проводиться статическими методами, при которых вместо регулирующих клапанов устанавливают уменьшающие проход вставки.

Кольцевые уплотнители разного диаметра реально сделать самому, поставить на места резьбового соединения батареи.

Схема Тихельмана подходит для частного дома не зависимо от количества этажей, но не используется внутри многоквартирных строений. Она не может безопасно вырабатывать нужный минимум тепловой энергии в подобных масштабах.

Наглядно подключение петли показано в нижеследующем видео:

Система отопления Петля Тихельмана: схема и расчёт

Одна из интереснейших тем в теплотехнике — системы отопления с попутной двухтрубной подачей теплоносителя, именуемой в среде мастеров схемой Тихельмана. Устройство их действительно уникально: система практически не требует балансировки, отличается стабильностью работы, но при этом имеет и ряд недостатков.

Описание системы

В профессиональных кругах петля Тихельмана именуется двухтрубной системой отопления с попутным движением теплоносителя. Такое название полностью отражает суть и принцип работы, отличительные черты лучше всего видны на фоне двухтрубной системы с обратным движением теплоносителя, которая знакома практически всем.

Представим радиаторную сеть, развёрнутую в прямой ряд. При классической схеме тепловой узел расположен в начале этого ряда, от него вдоль всей сети следует две трубы для подачи горячего и возврата холодного теплоносителя соответственно. При этом каждый радиатор представляет собой своего рода шунт, поэтому, чем больше удаление нагревательного прибора от теплового узла, тем выше гидравлическое сопротивление в петле его подключения.

1 — Двухтрубная схема подключения радиаторов со встречным током теплоносителя в подаче и обратке; 2 — схема подключения Петля Тихельмана с попутным подключением

Если же мы ряд радиаторов свернём в кольцо, то оба его края будут примыкать к тепловому узлу. В этом случае гораздо выгоднее сделать так, чтобы возвратный трубопровод направлял теплоноситель не обратно в котельную, а продолжал следовать далее по цепочке, то есть попутно подаче. Иными словами труба подачи следует от теплового узла и заканчивается на крайнем радиаторе, в свою очередь возвратный трубопровод берет свое начало от первого радиатора и направляется в котельную. Этот же принцип может быть реализован, даже если радиаторы расположены в пространстве линейно, просто от места врезки крайнего радиатора в обратку труба разворачивается чтобы вернуть охлажденный теплоноситель. При этом на определенном участке система отопления будет трёхтрубной, так петлю Тихельмана тоже иногда называют.

Петля Тихельмана с размещением радиаторов по периметру здания. От каждого радиатора общая длина труб подачи и обратки примерно одинакова. 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — труба подачи; 5 — труба обратки; 6 — циркуляционный насос; 7 — расширительный бак

Но зачем нужны такие сложности? Если внимательно изучить схему, то окажется, что сумма длин питающего и возвратного трубопровода для каждого радиатора одинакова. Отсюда вывод: гидравлическое сопротивление каждой отдельно взятой петли подключения эквивалентно остальным участкам, то есть система попросту не нуждается в балансировке.

Область применения

Тем не менее, соблазн избежать гидравлической настройки системы не должен приводить к поспешным необдуманным решениям. Двухтрубная попутная система характеризуется высокой материалоёмкостью, потому её монтаж оправдан далеко не во всех случаях.

Рассмотрим такое понятие как степень «прижатия» нагревательного прибора при балансировке двухтрубной обратной системы. Занижая условный проход в месте подключения нескольких первых радиаторов можно сократить расход теплоносителя в них, тем самым снизив перепад давления, чтобы на последующих участках сети сохранялся достаточный напор. Если радиаторная сеть состоит из большого числа нагревательных приборов, расположенных на большом удалении друг от друга, ограничивать проток на начальных радиаторах придётся до такой степени, что протока в них будет недостаточно для нормального выделения тепла. Это вынуждает использовать насосы с более высокой производительностью, из-за чего при течении теплоносителя в отдельных узлах образуется ощутимый шум. В целом можно сказать, что устройство двухтрубной попутной системы оправдано только при количестве радиаторов более 8–10 при общей длине трубопроводного става свыше 70 м.

Материалоёмкость системы Тихельмана существенно увеличивается при невозможности завернуть радиаторную сеть в кольцо, то есть расположить отопительный трубопровод строго по периметру здания. Этому обычно мешают дверные проемы и фронты остекления в пол. В таких случаях приходится монтировать дополнительную трубу, по которой теплоноситель будет возвращаться в котельную, а поскольку общая длина произвольно взятой петли увеличивается как минимум на половину — увеличивать условный проход магистрали или производительность насоса. Избежать дополнительных затрат в принципе можно за счёт устройства коллекторной (лучевой) системы, однако лучше предварительно выполнить сравнительный расчёт материалоёмкости.

Данные по гидравлике

Работа системы, устроенной по принципу петли Тихельмана, отличается высокой стабильностью. Сей факт наглядно демонстрируется данными гидравлического расчёта, однако для этого требуется соблюдение ряда монтажных правил.

Основным функциональным элементом такой системы остаётся гидравлический насос. Он создает давление на выходе, то есть на подаче, и разрежение на входе — обратке. Численно величина обоих значений снижается по мере удаления от насоса, причём падение напора происходит не линейно, оно описывается квадратичной величиной динамического напора. Эта закономерность прослеживается и для подающей ветки, и для возвратной, условно падение можно описать на примере трубопровода длиной 100 м:

Удаление от насоса в сторону движения теплоносителя (м)Давление в подаче (% от номинального)Разрежение в обратке (% от номинального)Падение давления на радиаторе
1090 %5 %95 %
2075 %20 %95 %
3055 %35 %90 %
5045 %40 %85%
6040 %45 %85 %
7035 %55 %90 %
8020 %75 %95 %
905 %90 %95 %

Это усреднённые данные, но даже по ним видно, что при кажущейся равномерности потери напора в середине радиаторной сети немного выше, нежели по краям. Действительно, за счёт пропорционального изменения давления и разрежения в каждом радиаторе поддерживается практически одинаковый перепад давлений в каждом нагревательном приборе, однако для корректной и стабильной работы петли Тихельмана следует соблюдать ряд правил, о которых речь пойдет дальше.

Читайте также:  Труба Рехау для теплого пола: разновидности, преимущества, применение

Обвязка котельной

Двухтрубная система с попутным движением теплоносителя может быть как открытой, так и закрытой. Как мы уже говорили, основным функционирующим элементом служит насос, поэтому его установки не избежать. На естественную циркуляцию не стоит рассчитывать даже при правильно организованной верхней разводке труб. Как мы уже говорили, типичная петля Тихельмана содержит 10 и более радиаторов, продавить такое плечо только гравитационным перемещением маловероятно.

На выходе подачи котла устанавливается традиционная «тройка» безопасности: автоматический воздухоотводчик, стравливающий клапан и манометр. Для открытых систем выход подачи должен быть организован вертикальным каналом до высоты образования уклона, в самой верхней точке устанавливается открытый расширительный бак. Далее труба подачи направляется непосредственно в разводящую сеть.

На обратке котла устанавливается один циркуляционный насос, производительность которого определяется гидравлическим сопротивлением всей системы. Непосредственно перед насосом располагается сетчатый фильтр, а сразу после насоса — тройник для подключения расширительного бака и манометр нижней точки. Также в этом месте выводится заправочный патрубок.

Запорная арматура котельной представлена полнопроходными шаровыми кранами, которые устанавливаются:

  • по обе стороны от насоса
  • на отводе расширительного бака
  • на заправочном патрубке
  • в точках подключения котла к магистрали

Дополнительно в котельной может быть установлена связывающая байпасная трубка, в разрыв которой монтируется электрический нормально закрытый клапан, срабатывающий при остановке циркуляции. Врезка байпаса должна осуществляться до циркуляционного насоса: байпас предназначен для защиты от температурного шока и шунтирует он теплообменник котла от магистрали, а не наоборот.

Система Тихельмана хороша также и тем, что при относительно высокой мощности радиаторной сети возможна работа от котла со встроенным комплексом гидротехнического оборудования. Однако при необходимости согласовать работу радиаторной сети и теплого пола каждое плечо системы оснащается собственным циркуляционным насосом. Если производительность в плечах существенно отличается, необходима установка гидрострелки.

Система трубопроводов

Как верхнюю, так и нижнюю разводку петли Тихельмана принято выполнять трубами PPR. Если требуется скрытая прокладка труб, рекомендуется использовать систему PEX с надвижными фитингами. Если прокладка труб выполняется в плотных основаниях, следует использовать теплоизоляционную оболочку.

Система отопления Тихельмана для одноэтажного дома выполняется крайне просто. Трубопровод подачи теплоносителя пролегает от теплового узла вдоль всей радиаторной сети. Номинальный условный проход трубы сохраняется вплоть до предпоследнего радиатора в ряду, после чего выполняется переход на диаметр подключения радиаторов, обычно это 20 мм полипропилен или 16 мм PEX. Трубопровод возвратного тока прокладывается в том же порядке, но навстречу подаче, то есть первый радиатор по направлению тока горячего теплоносителя подключается заниженным диаметром.

Если система Тихельмана устраивается на нескольких этажах, требуется монтаж вертикального стояка. Магистральная труба подачи следует до самой высокой точки, откуда выполняется ответвление для запитки верхнего этажа. После этого магистраль разворачивается вниз, на этом участке осуществляется врезка подачи для всех нижних этажей. Общий трубопровод возвратного тока выполняется по аналогии с двухтрубной системой со встречным движением теплоносителя, то есть попросту выполняет роль сборной магистрали.

Диаметр труб для петли Тихельмана рассчитывается по общим методикам теплотехнического расчёта, основанных на выборе оптимального значения Kvs магистральных труб. При этом желательно, чтобы по ходу движения теплоносителя не происходило ступенчатого занижения условного прохода, иначе естественная балансировка системы будет не столь качественной. В системах с протяженностью разводящих трубопроводов до 120 м оптимальным считается условный проход магистральных труб не менее 270 мм 2 , а для труб подключения радиаторов — порядка 130 мм 2 .

Арматура радиаторов

Часто можно встретить мнение, что двухтрубная система отопления с попутным движением теплоносителя не нуждается в комплектации радиаторов регулировочной арматурой. Считается, что якобы этот факт нивелирует дополнительные затраты на дополнительные трубы и фитинги для них. Однако корректная работа радиаторов в таком случае вряд ли возможна.

Термостатические головки для радиаторов в системе Тихельмана должны быть установлены обязательно. Без них никак не выполнить индивидуальную настройку радиаторов в разных комнатах, что не очень комфортно при изменяющихся климатических условиях. Что до балансировочных клапанов (дросселей), то на этот счёт споры особенно жаркие. Как упоминалось выше, даже при попутном движении теплоносителя отмечается перепад давления на радиаторах. При грамотном расчёте системы это явление можно компенсировать, варьируя число секций в радиаторах разных зон. Тем не менее, если существует даже минимальный риск ошибки, лучше установить регулировочные клапаны хотя бы на нескольких первых радиаторах с каждого края.

Петля Тихельмана также может балансироваться статическими методами регулировки. Речь идёт о так называемом «шайбовании». Если гидравлическим расчётом заранее определены коэффициенты местных сопротивлений, регулировочные клапаны могут быть заменены вставками, занижающими условный проход на определённую величину. Из простейших вариантов можно предложить самостоятельно изготовленные кольцевые уплотнения с разным внутренним диаметром, которые устанавливаются в местах резьбового подключения радиаторов.

Двухтрубная система отопления, разные схемы схема Тихельмана

Мнение владельцев загородных домов о системе

Как считает большинство хозяев загородной недвижимости, схема эта действительно очень эффективная — петля Тихельмана. Отзывы такая система заслужила просто отличные. В доме при правильном ее проектировании и сборке устанавливается очень комфортный микроклимат. При этом само оборудование системы редко ломается и служит долго.

Хорошо отзываются о петле Тихельмана не только владельцы жилых домов, но и хозяева дач. Система отопления в таких зданиях в холодное время года зачастую используется нерегулярно. Если разводка выполнена по тупиковой схеме, при включении котла помещения прогреваются крайне неравномерно. С попутной системой таких проблем, конечно же, не возникает. Но обходится сборка отопления по такой схеме действительно дороже чем по тупиковой.

Порядок выполнения монтажных работ

Работы состоят из следующих операций:

  1. Установка котла. Необходимая минимальная высота комнаты для его размещения 2,5 м, допустимый объём помещения равен 8-ми куб. м. Требуемая мощность оборудования определяется расчётом (примеры приведены в специальных справочных изданиях). Ориентировочно для обогрева 10-ти кв. м необходима мощность в 1кВт.
  2. Навеска радиаторных секций. Рекомендуется использование в частных домах биометрических изделий. После подбора необходимого количества радиаторов, выполняется разметка их расположения (как правило, под оконными проёмами) и крепление с помощью специальных кронштейнов.
  3. Протягивание магистрали попутной системы отопления. Оптимально применение металлопластиковых труб, успешно выдерживающих высокие температурные режимы, отличающиеся долговечностью и лёгкостью монтажа. Основные трубопроводы (подача и “обратка”) от 20-ти до 26-ти мм и 16-ти мм для подсоединения радиаторов.
  4. Установка циркуляционного насоса. Монтируется на обратной трубе вблизи котла. Врезка выполняется через байпас с 3-мя кранами. Перед насосом обязательна установка специального фильтра, что послужит значительному увеличению сроков эксплуатации прибора.
  5. Монтаж расширительного бака и элементов обеспечивающих безопасность работы оборудования. Для системы отопления с попутным движением теплоносителя выбираются только мембранные расширительные бачки. Элементы группы безопасности поставляются в комплекте с котлом.

Для обводки магистралью дверных проёмов в подсобках и помещениях хозяйственного назначения допускается монтировать трубы прямо над дверью. В этом месте, для исключения накапливания воздуха, обязательно устанавливаются автоматические воздухоотводчики. В жилых помещениях трубы могут прокладываться под дверью в теле пола или обходом препятствия с использованием третьей трубы.

Схема Тихельмана для двухэтажных домов предусматривает определённую технологию. Трубная разводка выполняется с завязыванием всего здания целиком, а не каждого этажа по отдельности. Рекомендуется на каждом этаже устанавливать по одному циркуляционному насосу с сохранением равных длин обратных и подающих трубопроводов для каждого радиатора в отдельности в соответствии с основным условиям попутной двухтрубной системы отопления. Если установить один насос, что вполне допустимо, то при его выходе из строя произойдёт отключение отопительной системы во всём здании.

Многие специалисты считают целесообразным устройство общего стояка на два этажа с отдельной трубной разводкой на каждом этаже. Это позволит учесть различие потерь тепла на каждом этаже с подбором диаметров труб и количества необходимых секций в радиаторных батареях.

Раздельная попутная схема отопления на этажах значительно упростит настройку системы и позволит осуществить оптимальную балансировку нагрева всего здания. Но для получения должного эффекта обязательно необходима врезка в контур попутки балансировочного крана для каждого из двух этажей. Краны можно расположить рядом непосредственно вблизи котла.

Петля Тихельмана на два этажа или более

Чаще всего такая система отопления монтируется в одноэтажных зданиях большой площади. Именно в таких домах она работает наиболее эффективно. Однако иногда такую систему собирают и в двух-трехэтажных зданиях. При выполнении разводки в таких домах следует придерживаться определенной технологии. По схеме Тихельмана в данном случае завязывается не каждый этаж по отдельности, а все здание в целом. То есть сохраняется равная сумма длин обратного и подающего трубопровода для каждого радиатора дома.

Петля Тихельмана на два этажа собирается, таким образом, по особой схеме. Также специалисты считают, что использовать только один циркуляционный насос в этом случае нецелесообразно. Если имеется такая возможность, в здании стоит установить по одному такому прибору на каждом этаже. В противном случае при поломке единственного насоса, отопление будет отключено во всем доме сразу.

Области применения петли Тихельмана

Увеличенный расход материалов не всегда лучше, поэтому система Тихельмана в двухэтажном доме применяется редко. Исключение составляет магистраль с размещением радиаторов по периметру строения. Кольцевая система потребует значительных затрат на материалы, но обустройство замкнутого кольца выполняется только при отсутствии помех в виде дверных проемов, окон «в пол». Придется укладывать еще одну магистраль для возврата теплоносителя в прибор нагрева.

Если петля удлиняется, удаляется от нагревателя, повышается сечение труб или подбирается мощный циркуляционный насос, в противном случае система не сможет работать в полную силу.

Для снижения расходов теплоносителя в зоне подключения первых батарей диаметр трубопровода следует уменьшить, это поможет сохранить напор воды на последующих участках. Уменьшение диаметра производится только по предварительным расчетам, иначе радиаторы, удаленные от прибора нагрева на значительное расстояние, не получат теплоноситель в достаточном объеме.

Получается, что применять двухтрубную проводку с попутным током воды можно лишь при общей протяженности магистрали от 70 метров, на которой устанавливается от 10 радиаторов. В противном случае попутная разводка не оправдает вложенных средств.

Что такое петля Тихельмана

Петля Тихельмана (еще называют «попутной схемой») — это схема разводки труб системы отопления. Такая схема сочетает в себе одновременно достоинства двух распространенных схем: ленинградской и двухтрубной, при этом обладая дополнительными преимуществами.

Если сравнивать с двухтрубной схемой, то при применении петли Тихельмана нет необходимости устанавливать дорогостоящие регулировочные системы. Отопительные приборы работают как один большой радиатор. Проток теплоносителя одинаков по всему контуру отопления. Отсутствуют сужения труб и тупиковые радиаторы, в которых проток хуже всего. Недостаток в сравнении с двухтрубной схемой отопления — необходимо всю ветку делать трубой большого диаметра, что может сильно сказаться на стоимости всей системы в целом.

Если сравнить с ленинградской (однотрубной) схемой — преимущество в том, что теплоноситель не пройдет по трубе мимо радиатора. Ленинградская схема очень требовательна к проекту схемы и монтажу. При невысокой квалификации выполнения либо первого либо второго, будет невозможно заставить воду проходить через отопительный прибор, она пройдет по трубе мимо. Радиатор же останется чуть теплым. К тому же, в ленинградской схеме первые по току воды радиаторы будут горячее, чем последуюцие. Так как вода дойдет до них уже охлажденная. Недостаток петли Тихельмана по сравнению с «ленинградкой» — увеличение расхода трубы почти в 2 раза.

Читайте также:  Устройство бойлера: варианты конструкций в зависимости от вида и типа

Из общих достоинств хочется отметить, что такую схему трудно разбалансировать. Условия для движения теплоносителя почти идеальные, что, к тому же положительно отражается работе теплогенератора (будь то котел, солнечные системы или что-то еще).

Основной недостаток попутной схемы отоплния — определенные требования к помещению. На практике не всегда удается организовать круговое движение теплоносителя. Могут помешать дверные проемы, архитектурные особенности и т.п. К тому же возможно ее примененние только при горизонтальной разводке, при вертикальной петля Тихельмана не применима.

Традиционно используемые схемы отопления

  1. Однотрубная. Циркуляция теплового носителя осуществляется по одной трубе без использования насосов. На магистрали выполняется последовательное подключение радиаторных батарей, от самого последнего по трубе в котёл возвращается охлаждённый носитель (“обратка”). Система проста в исполнении и экономична за счёт потребности меньшего количества труб. Но параллельное движение потоков приводит к постепенному остыванию воды, в результате к радиаторам, расположенным в конце последовательной цепочке, носитель поступает значительно охлаждённым. Этот эффект возрастает при увеличении числа радиаторных секций. Поэтому в комнатах, расположенных вблизи котла, будет чрезмерно жарко, а в удалённых холодно. Для увеличения теплоотдачи увеличивают количество секций в батареях, устанавливают разные диаметры труб, дополнительную регулирующую арматуру, выполняют обустройство каждого радиатора байпасами.
  2. Двухтрубная. Каждая радиаторная батарея подключается параллельно к трубам прямой подаче горячего теплоносителя и “обратке”. То есть каждый прибор снабжается индивидуальным выходом в “обратку”. При одновременном сбросе остывшей воды в общий контур, теплоноситель возвращается на подогрев в котёл. Но при этом также нагрев отопительных приборов постепенно уменьшается по мере их удаления от источников подачи тепла. Радиатор, расположенный в сети первым, получает наиболее горячую воду и первым отдаёт носитель в “обратку”, а расположенный в конце получает теплоноситель последним с пониженной температурой нагрева и также последним отдаёт воду в обратный контур. На практике в первом приборе циркуляция горячей воды получается наилучшей, а в последнем наихудшей. Стоит отметить и возросшую цену таких систем по сравнению с однотрубными.

Обе схемы оправданы для небольших площадей, но неэффективны при протяжённых сетях.

Усовершенствованной двухтрубной является схема отопления Тихельмана. При выборе конкретной системы определяющим является наличие финансовых возможностей и способность обеспечения отопительной системы оборудованием, обладающим оптимальными требуемыми характеристиками.

Особенность отопления Тихельмана

Идея изменения принципа действия “обратки” была обоснована в 1901-ом году немецким инженером Альбертом Тихельманом, в честь которого и получила своё название — “петля Тихельмана”. Второе название — “возвратная система реверсивного типа”. Так как движение теплоносителя в обоих контурах, подающем и обратном, осуществляется в одном, попутном направлении, часто используется и третье название — “схема с попутным движением тепловых носителей”.

Сущность идеи состоит в наличии одинаковой длины прямых и обратных трубных участков соединяющих все радиаторные батареи с котлом и насосом, что создаёт одинаковые гидравлические условия во всех отопительных приборах. Равные по протяжённости циркуляционные контуры, создают условия прохождения горячим теплоносителем одинакового пути к первому и последнему радиатору с получением ими одинаковой тепловой энергии.

Схема петли Тихельмана:

Схема отопления с петлей Тихельмана плюсы и минусы

Двухтрубные системы отопления частного дома, как правило, это тупиковые системы, что приводит к тому, что в последнем радиаторе вследствие наибольшей удаленности напор и проток теплоносителя слабее, соответственно отопительный прибор греет хуже. Эта проблема решает путем увеличения количества секций радиаторов или добавлением регуляторов на каждый радиатор.

Второе решение, которое используется при монтаже двухтрубных систем отопления частного дома, является балансирование системы.

Схема Тихельмана достаточно проста. В классической двухтрубной схеме обратная тепломагистраль начинается от последнего радиатора и заканчивается котлом, а подача начинается от котла и заканчивается последним радиатором.

Особенности петли Тихельмана заключаются в том, что «обратка» начинается с первого радиатора, доходит до последнего и возвращается к котлу, а подача, как и в классической схеме, начинается с котла и заканчивается последним радиатором.

Получается, что первый радиатор от котла первый на подаче и последний на обратке, соответственно, последний радиатор последний на подаче, но первый на обратке.

Это своего рода прямоточная система, в которой теплоноситель в подающей и обратной тепломагистралях перемещается в одном направлении.

Данная схема позволяет обеспечивать равномерное сопротивление и проток в двухтрубных системах.

Преимущества и недостатки петли Альберта Тихельмана

Двухтрубные системы отопления частного дома, монтаж которых выполнен по схеме Тихельмана, обладают преимуществами прямоточных однотрубных систем («ленинградки») и двухтрубных систем, а также рядом дополнительных превосходств.

Прежде всего, отметим сбалансированность системы и отсутствие необходимости установки различного регулировочного оборудования, которое стоит довольно дорого.

При этом проток теплоносителя по всей системе одинаков, а работа теплогенерирующего оборудования оптимальна и отличается высоким КПД.

К недостаткам схемы Тихельмана отнесем необходимость использования дополнительных труб и желательно большого диаметра, а это дополнительные расходы.

Причем не всегда архитектурные особенности частного дома позволяют произвести монтаж открытой системы отопления с тремя трубами. Например, установке системы отопления данного типа могут помешать дверные проемы, и ряд других архитектурны форм.

Поэтому организовать круговое движение промежуточного теплоносителя в двухтрубной системе отопления частного дома не всегда возможно.

Также отметим, что в большинстве случаев при монтаже возвратных отопительных систем реверсивного типа по схеме Тихельмана применяется горизонтальная разводка.

По остальным характеристикам и используемому отопительному оборудованию и теплогенераторам петля Тихельмана не отличается от двухтрубных аналогов.

Двухтрубная система отопления, разные схемы (схема Тихельмана)

Мы рассмотрим двухтрубную систему отопления, варианты её подключения с преимуществами и недостатками.

  1. Первая схема подключения

В любой системе имеется котёл для отопления и радиаторы, расположенные по периметру дома.

По этой трубе горячий теплоноситель подаётся от котла, проходит по порядку все радиаторы, отдавая тепло, на последнем разворачивается, и по второй трубе, собирая обратку со всех радиаторов, возвращается обратно в котёл.

Обычно при такой схеме основные трубы подачи и обратки имеют диаметр 25 мм, а радиаторы подключаются трубами диаметром 20 мм.

Данная схема подключения работает следующим образом. Горячий теплоноситель выходит с котла, доходит до первого радиатора, разогревает его и после этого по обратке возвращается в котёл.

Таким образом, данный радиатор находится первым на подаче и обратке, в самых благоприятных условиях. У него наиболее сильные подача и обратка. Потом теплоноситель идёт ко второму радиатору, разогревает его, и возвращается обратно в котёл. Соответственно, данный радиатор находится вторым на подаче и на обратке, и тоже имеет благоприятные условия.

Так разогреваются все радиаторы, вплоть до последнего, девятого на подаче и обратке.

У него наименее благоприятные условия для работы, самые слабые подача и обратка.

Если запустим эту схему с открытыми вентилями, то получится следующее: первый радиатор запустится на 100%, второй на 85%, третий на 65%, четвёртый на 40% и пятый на 10%. Оставшиеся радиаторы сами не запустятся.

Конечно, бывают разные и дома, и протяжённость труб, и количество секций. Поэтому система может работать лучше или хуже, но в любом случае для того, чтобы заставить все радиаторы работать, нужно искусственно создать сопротивление для теплоносителя в первых радиаторах с помощью балансировочных клапанов.

После балансировки первый радиатор разогреется на 100%, второй на 95%, третий на 90%, и так до последнего радиатора. Несколько последних радиаторов при этом никогда не запустятся больше, чем на 60% от своей мощности.

Последние радиаторы будут работать хуже всех. Такая схема имеет и другой недостаток. Например, в этой комнате вы решили убавить мощность радиатора или полностью его закрыть.

В этом случае вы повлияете на работу других радиаторов:

Если вы снизите мощность своего радиатора, другие начнут греть чуть лучше, если вы прибавите обратку, они будут работать хуже. Можно улучшить данную схему, например, увеличить диаметр труб подачи и обратки, либо добавить секции к каждому радиатору.

Система получится более дорогой, при этом вот эти радиаторы на 100% работать не будут:

Соответственно, одна часть схемы зажата, а вторая не может запуститься и нормально заработать.

С точки зрения гидравлики не в самых лучших условиях находится и котёл, и циркуляционный насос, и вся система.

  1. Второй вариант подключения этих радиаторов по двухтрубной системе

С котла подача подключается к коллектору на два выхода, затем разные ветки подключаются к разным радиаторам:

По такой же схеме через двойной коллектор подключается и обратка. Образуются два радиаторных контура.

Получаются более короткие контуры подачи и обратки, но в таком случае придётся производить балансировку не только на радиаторах, но и на коллекторе радиаторных контуров, потому что на практике практически не бывает такого, чтобы обе ветки были совершенно одинаковыми и имели одинаковое гидравлическое сопротивление.

При таком схеме радиаторы будут работать гораздо лучше, даже последние радиаторы, но на 100% от своей тепловой мощности они не запустятся.

  1. Третья схема подключения

Эта схема называется схемой Тихельмана. В ней подача идёт до последнего радиатора, и обратка начинается с последнего радиатора, и на выходе получается вот что:

Здесь тоже трубы подачи и обратки имеют диаметр 25 мм, а к радиаторам идут трубы диаметром 20 мм.

Давайте посмотрим, как будет работать данная схема подключения. С котла теплоноситель поступает в первый радиатор, и с него начинается обратка.

Таким образом, данный радиатор является первым на подаче и девятым на обратке, то есть имеет наиболее сильную подачу и наиболее слабую обратку. Затем теплоноситель разогревает следующий радиатор, который является вторым на подаче и восьмым на обратке.

По сравнению с предыдущим, у него получается несколько хуже подача, но зато несколько лучше обратка. Рассмотрим вот этот радиатор:

Он получается девятый на подаче и первый на обратке, то есть у него наиболее слабая подача и наиболее сильная обратка, поскольку он находится ближе всех к котлу по обратной линии:

Рассмотрим данный радиатор:

Он получается восьмым на подаче и вторым на обратке. При такой схеме уже не требуется производить балансировку самих радиаторов. Если все радиаторы и вентиля будут открыты полностью, всё равно все радиаторы запустятся на 100% своей мощности.

При такой схеме подключения все радиаторы работают совершенно независимо друг от друга.

Если на каком-то любом радиаторе требуется убавить или прибавить мощность, это совершенно не повлияет на работу остальных радиаторов. У данной схемы имеется и другое преимущество: весь теплоноситель движется в одном направлении.

Теплоносителю не надо разворачиваться, он продолжает двигаться в том же направлении, и с точки зрения гидравлики это очень хорошо. Данную ситуацию можно сравнить с автомобильным движением.

Это похоже на кольцевую дорогу без светофоров и резких разворотов на 180°, где всё регулируется само по себе. При всех описанных плюсах у данной схемы есть и один небольшой минус.

Получается, что слева сильная подача, справа сильная обратка, а где-то посередине, при переходе сильной обратки в сильную подачу, имеется равенство сил, и если на это место встанет радиатор, то он работать не будет.

В жизни такое случается довольно редко, но уж если случилось, можно решить эту проблему, перенеся радиатор вправо или влево буквально на 1 метр.

Если не получается перенести радиатор, можно удлинить трубу до или после радиатора. Можно сделать такую петлю:

После этого радиатор будет греть точно так же, как и все остальные.

Все права на видео принадлежат: Марат Ишмуратов

Ссылка на основную публикацию