Гравитационная система отопления дома своими руками: клапана, схемы, расчет

Расчет гравитационной системы отопления частного дома – схема

Процесс монтажа и подключения системы теплоснабжения для многих хозяев несет в себе множество вопросов и сложностей, не говоря уже о терминологии, используемой в таком строительстве. Поэтому следует более подробно расписать, что такое гравитационная система отопления частного дома, поскольку такие варианты систем очень широко используются современными застройщиками и отличаются массой достоинств. Кроме того, следует детально рассмотреть, как должен выполняться расчет гравитационной системы отопления и какие для этого требуется выполнить мероприятия.

Принцип циркуляции теплоносителя в системе

Если говорить о многоквартирных домах, то в таких постройках циркуляция воды в системе отопления обусловлена перепадом давления, образующимся между трубопроводами подвода и отвода. Абсолютно логично, что если давление в одной трубе превышает давление в другой, то это неизбежно заставит воду, находящуюся в контуре, двигаться (прочитайте: “Потери и перепад давления в системе отопления – решаем проблему”).

Однако с частными домами дело обстоит иначе. В этих сооружения отопительные системы очень часто функционируют в автономном режиме, а основным источником энергии в таких системах обычно является электричество, иногда – твердые виды топлива. Этот вариант предусматривает движение воды, которое осуществляется за счет работы отопительного насоса циркуляции, оборудованного электрическим мотором с небольшой мощностью в 100 Вт.

Но применение такого современного оборудования можно позволить себе далеко не всегда, кроме того, подобные механизмы появились на строительном рынке сравнительно недавно.

Для того чтобы использовать подобный механизм работы эффективно, требуется оборудовать специальный контур, имеющий соответствующую форму, и благодаря принципу конвекции теплоноситель будет двигаться по кругу непрерывно.

Если говорить более простым языком, схема гравитационной системы отопления представляет собой два сосуда сообщающегося типа, которые соединены между собой в кольцо посредством трубок, или контура отопления. Первым из таких сосудов является котел, а торой представляет собой используемый отопительный прибор.

Важно помнить, что высота котла отопления, который оборудован разгонным коллектором для радиаторов отопления, прямо пропорциональна скорости движущегося внутри контура теплоносителя.

Для того чтобы подобная закрытая гравитационная система отопления имела большую скорость циркуляции теплоносителя, стоит принять во внимание следующие моменты:

  • котел нагрева требуется разместить по возможности ниже относительно приборов отопления, а при наличии подвального помещения будет лучше установить его именно там;
  • высота расположения разгонного коллектора может быть разной, этот механизм может располагаться как прямо под потолком, так и еще выше, например, в чердачном помещении. В том же месте должен устанавливаться и отопительный бак расширения (прочитайте также: “Коллекторная система отопления частного дома – схема разводки”);
  • улучшить циркуляцию воды позволит также устройство определенного уклона от бака к котлу, так как оптимальная схема гравитационной системы отопления предусматривает движение остывшей воды именно по такому принципу.

Не стоит также забывать и о том, что на то, какой будет скорость циркуляции теплоносителя в системе, влияют два параметра: это перепад внутри контура, а также показатель гидравлического сопротивления (прочитайте также: “Правильный расчет теплоносителя в системе отопления”).

Это сопротивление зависит от ряда факторов, в частности:

  • от того, каким будет диаметр розлива, поскольку большой показатель сделает движение воды внутри контура более свободным;
  • от того, сколько изгибов и ответвлений имеет сам контур. В том случае, если таких поворотов много, то сопротивление будет больше, что и объясняет стремление многих застройщиков по возможности смонтировать контур максимально прямым;
  • от того, какой объем запорной арматуры имеется в системе, так как любой из этих элементов, включая вентили, задвижки и т.п. влияет на гидравлическое сопротивление (прочитайте: “Как сделать гидравлический расчет системы отопления – теория и практика”).

Поэтому можно сделать вывод, что применение в контуре отопления любых запорных элементов должно быть выполнено так, чтобы в открытом состоянии между ними оставался просвет, в наибольшей степени совпадающий с трубным просветом. Гораздо правильнее будет использовать современный вентиль шарового типа, так как изгибы вентиля сложной винтовой формы будут способствовать лишь еще большей потере напора воды, а шаровой образец позволит свести гидравлическое сопротивление к минимуму. Читайте также: “Расчет бака аккумулятора для отопления”.

Традиционные отопительные системы гравитационного типа монтируются открытыми. Их бак расширения не является герметичным, что дает ему возможность не только вмещать в себя излишки теплоносителя, но и собирать весь ненужный воздух, вытесненный системой. При этом в том случае, если уровень воды падает, то она просто поступает в этот расширительный бак.

Технические особенности гравитационной отопительной системы

Такой вариант устройства системы отопления отличается своими нюансами и обладает множеством очевидных и неоспоримых достоинств, к которым принято относить следующие:

  • подобная система циркуляции способна самостоятельно регулировать процесс работы и распределять теплоноситель внутри контура именно так, как того требует схема;
  • стойкость к любым механическим повреждениям, что обусловлено прочностью контура и используемых труб. Конструкция не имеет каких-либо быстро изнашивающихся деталей, благодаря чему двухтрубная гравитационная система отопления, являющаяся традиционной, может исправно функционировать более полувека без необходимости проведения никаких ремонтных работ;
  • абсолютная автономность работы, что является очень важным преимуществом. Данная система не зависит от того, включена ли электроэнергия или нет, что позволяет избежать различных непредвиденных ситуаций;
  • сконструировать такое отопление собственноручно несложно, так как устройство контура и его схема будут предельно понятны даже малоопытному хозяину. В случае трудностей всегда можно изучить различные фото- и видеоматериалы, которые можно найти у специалистов, занимающихся сборкой и подключением оборудования такого типа.

Так или иначе, у традиционной системы теплоснабжения гравитационного типа имеются и некоторые отрицательные стороны, которые также нельзя не упомянуть:

  • инерционные показатели этого оборудования будут очень большими. Это значит, что для полного нагрева ему потребуется очень большое количество времени с момента розжига котла;
  • несмотря на то, что разводка труб является предельно простой, стоимость такого оборудования довольно высока. Толстая труба, применяемая для монтажа, имеет весьма немалую цену;
  • в том случае, если система будет подключена не совсем правильно, то это станет причиной большой разницы в температуре между батареями отопления;
  • в связи с тем, что скорость циркуляции воды является низкой, то существует потенциальный риск замораживания бака расширения и той части контура, которая располагается в чердачном помещении.

Альтернативный способ устройства отопления

Все вышеуказанные особенности совершенно не означают, что естественные и принудительные системы циркуляции не могут функционировать в совокупности.

Так, очень правильным решением будет следующий вариант монтажа:

  1. Создается проект отопительной системы, работающей по гравитационному типу.
  2. На участке перед котлом в контуре монтируется вентиль, но делать это нужно так, чтобы не снизить сечение трубы.
  3. Вентильный обвод врезается меньшим диаметром трубы, а после этого на обводе устраивается насос циркуляции (прочитайте: “Расчет мощности насоса для отопления”). По мере необходимости его вполне можно отделить от основной системы при помощи двух вентилей. Далее на промежутке перед насосом требуется смонтировать грязевик.

Подобный вариант обустройства системы теплоснабжения будет отличаться неоспоримыми преимуществами, а именно:

  • нагрев всех приборов отопления будет выполняться гораздо более равномерно;
  • время на обогрев комнат после включения котла потребуется намного меньше по сравнению стандартным принципом работы оборудования.

При этом нет никакой необходимости обустраивать такой вариант отопления по закрытому типу, так как мощности насоса вполне хватит для того, чтобы функционировать и без большого давления.

При условии отключения электроэнергии достаточно лишь отключить насос и открыть специальный вентиль на байпасе. В этом случае работа системы будет продолжаться уже по принципу гравитационной.

Вариант разводки батарей отопления

Схема разводки радиаторов, отличающаяся относительной простотой и надежностью, может быть следующей:

  1. В конце коллектора разгона на помещении чердака устанавливается расширительный бак, от которого, в свою очередь, и должен начинаться идущий под неизменным уклоном розлив диаметром от 40 до 50 мм.
  2. Контур возврата располагается по всему периметру пола на первом этаже.

    Несмотря на тот факт, что для большей эффективности оборудования специалисты рекомендуют устанавливать нижний розлив в подвальном помещении, тем не менее, делать это следует лишь тогда, когда точно известно, что температура в этом месте не опускается ниже 0° даже при условии неработающего котла. Однако если в состав теплоносителя входят такие элементы, как, например, антифриз или тосол, то беспокоится не о чем.

  3. Если существует реальная возможность определить розливы на чердаке и в подвале, то это однозначно будет отвечать нормам эстетики, поскольку, как известно, массивная и толстая труба вряд ли сможет украсить жилище и гармонично вписаться в его интерьер.

Таким образом, можно сказать, что монтаж гравитационной системы теплоснабжения не несет в себе чрезмерных трудностей и вполне может быть выполнен собственными силами.

Однако в случае возникновения неполадок или для выполнения расчета мощности рекомендуется все же обратиться за советом к специалистам, способным оказать нужную помощь в ремонте оборудования, а также предоставить различные фото образцов устройства таких систем и подробные видеоматериалы по их правильному подключению.

Пример устройства гравитационной системы отопления на видео:


Мифы «гравитационки»

Несмотря на то что отопительная техника с каждым годом совершенствуется и дополняется новыми прогрессивными техническими решениями и высокоэффективным оборудованием, системы водяного отопления с естественной циркуляции теплоносителя продолжают занимать весьма существенную долю в теплоснабжении. Они широко и успешно применяются как в индивидуальном жилищном и коттеджном строительстве, так и при сооружении объектов в районах, где электроснабжение либо отсутствует, либо осуществляется с перебоями.

Рис. 2. Пример двухтрубной системы отопления с естественной циркуляцией

Для этого используем пример классической двухтрубной гравитационной системы отопления (рис. 2), со следующими исходными данными: первоначальный объем теплоносителя в системе – 100 л; высота от центра котла до поверхности нагретого теплоносителя в баке Н = 7 м; расстояние от поверхности нагретого теплоносителя в баке до центра радиатора второго яруса h1 = 3 м, расстояние до центра радиатора первого яруса h2 = 6 м.

Температура на выходе из котла – 90 °С, на входе в котел – 70 °C. Действующее циркуляционное давление для радиатора второго яруса можно определить поформуле:

Для радиатора первого яруса оно составит:

При более точных расчетах учитывается также остывание воды в трубопроводах.

Миф 1. Трубопроводы должны прокладываться с уклоном по направлению движения теплоносителя. Не спорим, так было бы не плохо, но на практике это требование не всегда удается выполнить. Где-то балка покрытия мешает, где-то потолки устроены в разных уровнях и т.п. Что же будет, если выполнить подающий трубопровод с контруклоном (рис. 3)?

Рис. 3. Пример выполнения верхнего розлива с контруклоном

Если грамотно подойти к решению этого вопроса, то ничего страшного не произойдет. Циркуляционное давление если и снизится, то на ничтожно малую величину (несколько паскалей), за счет паразитного влияния остывающего в верхнем розливе теплоносителя. Воздух из системы придется удалять с помощью проточного воздухосборника и воздухоотводчика. Пример этого устройства показан на рис. 4. Дренажный кран служит для выпуска воздуха в момент заполнения системы теплоносителем. В «крейсерском» режиме этот кран закрыт. Такая система останется полностью работоспособной.

Рис. 4. Пример устройства для выпуска воздуха из верхнего розлива

Миф 2. В системах с естественной циркуляцией охлажденный теплоноситель вверх двигаться не может. Это вовсе не так. Для циркуляционной системы понятие «верха» и «низа» очень условны. Если обратный трубопровод на каком-то участке поднимается, то где-то он на эту же высоту и опускается. То есть гравитационные силы уравновешиваются.Все дело лишь в преодолении дополнительных местных сопротивлений на поворотах и линейных участках трубопровода. Все это, а также возможное остываниетеплоносителя на участках подъема должно учитываться в расчетах. Если система грамотно рассчитана, то схема, представленная на рис. 5, вполне имеет право на существование. Мало того, в начале прошлого века такие схемы достаточно широко применялись, несмотря на свою слабую гидравлическую устойчивость.

Рис. 5. Схема с верхним расположением обратного трубопровода

Миф 3. В гравитационных системах подающий трубопровод должен проходить над всеми ярусами радиаторов. Это тоже совсем не обязательно. Расположение подающего трубопровода с надлежащим уклоном под потолком верхнего этажа или на чердаке позволяет удалять воздух из системы через открытый расширительный бак. Однако проблему удаления воздуха можно решить и с помощью автоматических воздухоотводчиков (рис. 6) или отдельной воздушной линии.

Рис. 6. Схема с нижним расположением подающей линии

Миф 4. При естественной циркуляции теплоносителя радиаторы обязательно должны располагаться выше центра теплогенератора (котла). Это утверждение справедливо только при расположении отопительных приборов в один ярус. При количестве ярусов два и более, радиаторы нижнего яруса можно располагать и ниже котла, что, естественно, должно быть проверено гидравлическим расчетом. В частности, для примера, показанного на рис. 7, при H = 7 м, h1 = 3 м, h2 = 8 м, действующее циркуляционное давление составит:

Здесь: ρ1 = 965 кг/м 3 – плотность воды при 90 °С; ρ2 = 977 кг/м 3 – плотность воды при 70 °С; ρ3 = 973 кг/м 3 – плотность воды при 80 °С.

Циркуляционного давления вполне достаточно для работоспособности такой системы.

Рис. 7. Однотрубная гравитационная система с расположением радиаторов ниже котла

Миф 5. Гравитационную систему отопления, рассчитанную на водяной теплоноситель, можно безболезненно перевести на незамерзающий теплоноситель. Без расчета такая замена может привести к полному отказу системы отопления. Дело в том, что этилен- и полипропиленгликолевые растворы обладают значительно большей вязкостью, чем вода. Кроме того, удельная теплоемкость этих смесей несколько ниже, чем у воды, что требует, при прочих равных условиях, ускоренной циркуляции теплоносителя. Эти два фактора вместе взятые существенно увеличивают расчетное гидравлическое сопротивление системы, заполненной теплоносителями с низкой температурой замерзания.

Миф 6. В открытый расширительный бак необходимо постоянно доливать теплоноситель, т.к. он интенсивно испаряется. Да, это действительно большое неудобство, но его можно легко устранить. Для этого используется воздушная трубка и гидравлический затвор, устанавливаемый, как правило, ближе к нижней точке системы, рядом с котлом (рис. 8). Такая трубка служит воздушным демпфером между гидравлическим затвором и уровнем теплоносителя в баке, поэтому, чем больше ее диаметр, тем лучше. Тем меньше будет уровень колебаний уровня в бачке гидрозатвора. Некоторые умельцы умудряются закачивать в воздушную трубку азот или инертные газы, тем самым предохраняя систему от проникновения кислорода.

Рис. 8. Воздушная трубка с гидрозатвором

Миф 7. Насос, установленный на байпасе главного стояка, не создаст эффекта циркуляции, т.к. установка запорной арматуры на главном стояке междукотлом и расширительным баком запрещена. Можно поставить насос на байпасе обратной линии, а между врезками насоса установить шаровой кран. Такое решение не очень удобно, т.к. каждый раз перед включением насоса надо не забыть перекрыть кран, а после выключения насоса – открыть. Установка обычного пружинного обратного клапана невозможна из-за его значительного гидравлического сопротивления. Домашние мастера пытаются препарировать обратные клапаны, снимая с них пружинки совсем или устанавливая их «наоборот» (превращая клапан в нормально открытый). Такие переделанные клапаны создадут в системе неповторимые звуковые эффекты из-за постоянного «хлюпанья» с периодом, пропорциональным скорости теплоносителя.Есть гораздо более эффективное решение: на главном стояке между врезками байпаса устанавливается поплавковый обратный клапан для гравитационных систем VT.202 (рис. 9), который скоро появится в ассортименте VALTEC. Поплавок клапана в режиме естественной циркуляции открыт и не мешает движению теплоносителя. При включении насоса на байпасе клапан перекрывает главный стояк, направляя весь поток через байпас с насосом.

Рис. 9. Установка поплавкового нормально отрытого обратного клапана

Водяные системы отопления с естественной циркуляцией окутаны еще многими мифами, которые предлагаем вам развеять самостоятельно:

  • расширительный бак можно врезать только над главным стояком;
  • в таких системах нельзя ставить мембранный расширительныйбак;
  • регулировать тепловой поток от радиаторов в гравитационных системах нельзя;
  • естественная циркуляция не работает в межсезонье;
  • байпасы перед радиаторами в таких системах недопустимы;
  • водяные теплые полы в гравитационных системах работать не будут.

Гравитационная система отопления дома своими руками: клапана, схемы, расчет

Несмотря на то что отопительная техника с каждым годом совершенствуется и дополняется новыми прогрессивными техническими решениями и высокоэффективным оборудованием, системы водяного отопления с естественной циркуляции теплоносителя продолжают занимать весьма существенную долю в теплоснабжении. Они широко и успешно применяются как в индивидуальном жилищном и коттеджном строительстве, так и при сооружении объектов в районах, где электроснабжение либо отсутствует, либо осуществляется с перебоями.

Гравитационная система водяного отопления, принцип действия которой показан на рис. 1. была изобретена еще в 1777 г. французским физиком Боннеманом (Bonneman) для обогрева инкубатора.

Рис. 1. Принцип действия гравитационной системы отопления.

Начиная с 1818 г. системы отопления Боннемана стали широко применяться в Европе, правда, в основном для теплиц и оранжерей. Основы методики теплового и гидравлического расчета систем с естественной циркуляцией были разработаны англичанином Гудом (Hood) в 1841 г. Именно он теоретически доказал пропорциональность скоростей циркуляции теплоносителя квадратным корням из разницы высот центра нагрева и центра охлаждения, то есть перепада высот междукотлом и радиатором. Естественная циркуляция воды в системах отопления была достаточно хорошо изучена и имела мощную теоретическую поддержку. Однако споявлением насосных отопительных систем интерес ученых к «гравитационке» постепенно угасал. Теорию естественной циркуляции бегло и поверхностно освещаютв институтских курсах. При устройстве таких систем монтажники в основном пользуются советами «бывалых» да теми скупыми требованиями, которые изложены внормативных документах. Но нормативные документы лишь диктуют требования, но не дают объяснения причин появления того или иного «постулата». В связи с этим в кругу специалистов циркулирует достаточно много мифов, которые и хотелось бы немного развеять.

Рис. 2. Пример двухтрубной системы отопления с естественной циркуляцией

Для этого используем пример классической двухтрубной гравитационной системы отопления (рис. 2 ), со следующими исходными данными: первоначальный объем теплоносителя в системе – 100 л; высота от центра котла до поверхности нагретого теплоносителя в баке Н = 7 м; расстояние от поверхности нагретого теплоносителя в баке до центра радиатора второго яруса h1 = 3 м, расстояние до центра радиатора первого яруса h2 = 6 м.

Температура на выходе из котла – 90 °С, на входе в котел – 70 °C. Действующее циркуляционное давление для радиатора второго яруса можно определить поформуле:

Для радиатора первого яруса оно составит:

При более точных расчетах учитывается также остывание воды в трубопроводах.

Миф 1. Трубопроводы должны прокладываться с уклоном по направлению движения теплоносителя. Не спорим, так было бы не плохо, но на практике это требование не всегда удается выполнить. Где-то балка покрытия мешает, где-то потолки устроены в разных уровнях и т.п. Что же будет, если выполнить подающий трубопровод с контруклоном (рис. 3 )?

Рис. 3. Пример выполнения верхнего розлива с контруклоном

Если грамотно подойти к решению этого вопроса, то ничего страшного не произойдет. Циркуляционное давление если и снизится, то на ничтожно малую величину (несколько паскалей), за счет паразитного влияния остывающего в верхнем розливе теплоносителя. Воздух из системы придется удалять с помощью проточного воздухосборника и воздухоотводчика. Пример этого устройства показан на рис. 4. Дренажный кран служит для выпуска воздуха в момент заполнения системы теплоносителем. В «крейсерском» режиме этот кран закрыт. Такая система останется полностью работоспособной.

Рис.4. Пример устройства для выпуска воздуха из верхнего розлива

Миф 2. В системах с естественной циркуляцией охлажденный теплоноситель вверх двигаться не может. Это вовсе не так. Для циркуляционной системы понятие «верха» и «низа» очень условны. Если обратный трубопровод на каком-то участке поднимается, то где-то он на эту же высоту и опускается. То есть гравитационные силы уравновешиваются.Все дело лишь в преодолении дополнительных местных сопротивлений на поворотах и линейных участках трубопровода. Все это, а также возможное остываниетеплоносителя на участках подъема должно учитываться в расчетах. Если система грамотно рассчитана, то схема, представленная на рис. 5. вполне имеет право на существование. Мало того, в начале прошлого века такие схемы достаточно широко применялись, несмотря на свою слабую гидравлическую устойчивость.

Рис. 5. Схема с верхним расположением обратного трубопровода

Миф 3. В гравитационных системах подающий трубопровод должен проходить над всеми ярусами радиаторов. Это тоже совсем не обязательно. Расположение подающего трубопровода с надлежащим уклоном под потолком верхнего этажа или на чердаке позволяет удалять воздух из системы через открытый расширительный бак. Однако проблему удаления воздуха можно решить и с помощью автоматических воздухоотводчиков (рис. 6 ) или отдельной воздушной линии.

Миф 4. При естественной циркуляции теплоносителя радиаторы обязательно должны располагаться выше центра теплогенератора (котла). Это утверждение справедливо только при расположении отопительных приборов в один ярус. При количестве ярусов два и более, радиаторы нижнего яруса можно располагать и ниже котла, что, естественно, должно быть проверено гидравлическим расчетом. В частности, для примера, показанного на рис. 7. при H = 7 м, h1 = 3 м, h2 = 8 м, действующее циркуляционное давление составит:

Здесь: ρ1 = 965 кг/м 3 – плотность воды при 90 °С; ρ2 = 977 кг/м 3 – плотность воды при 70 °С; ρ3 = 973 кг/м 3 – плотность воды при 80 °С.

Циркуляционного давления вполне достаточно для работоспособности такой системы.

Рис. 7. Однотрубная гравитационная система с расположением радиаторов ниже котла

Миф 5. Гравитационную систему отопления, рассчитанную на водяной теплоноситель, можно безболезненно перевести на незамерзающий теплоноситель. Без расчета такая замена может привести к полному отказу системы отопления. Дело в том, что этилен- и полипропиленгликолевые растворы обладают значительно большей вязкостью, чем вода. Кроме того, удельная теплоемкость этих смесей несколько ниже, чем у воды, что требует, при прочих равных условиях, ускоренной циркуляции теплоносителя. Эти два фактора вместе взятые существенно увеличивают расчетное гидравлическое сопротивление системы, заполненной теплоносителями с низкой температурой замерзания.

Миф 6. В открытый расширительный бак необходимо постоянно доливать теплоноситель, т.к. он интенсивно испаряется. Да, это действительно большое неудобство, но его можно легко устранить. Для этого используется воздушная трубка и гидравлический затвор, устанавливаемый, как правило, ближе к нижней точке системы, рядом с котлом (рис. 8 ). Такая трубка служит воздушным демпфером между гидравлическим затвором и уровнем теплоносителя в баке, поэтому, чем больше ее диаметр, тем лучше. Тем меньше будет уровень колебаний уровня в бачке гидрозатвора. Некоторые умельцы умудряются закачивать в воздушную трубку азот или инертные газы, тем самым предохраняя систему от проникновения кислорода.

Миф 7. Насос, установленный на байпасе главного стояка, не создаст эффекта циркуляции, т.к. установка запорной арматуры на главном стояке междукотлом и расширительным баком запрещена. Можно поставить насос на байпасе обратной линии, а между врезками насоса установить шаровой кран. Такое решение не очень удобно, т.к. каждый раз перед включением насоса надо не забыть перекрыть кран, а после выключения насоса – открыть. Установка обычного пружинного обратного клапана невозможна из-за его значительного гидравлического сопротивления. Домашние мастера пытаются препарировать обратные клапаны, снимая с них пружинки совсем или устанавливая их «наоборот» (превращая клапан в нормально открытый). Такие переделанные клапаны создадут в системе неповторимые звуковые эффекты из-за постоянного «хлюпанья» с периодом, пропорциональным скорости теплоносителя.Есть гораздо более эффективное решение: на главном стояке между врезками байпаса устанавливается поплавковый обратный клапан для гравитационных систем VT.202 (рис. 9 ), который скоро появится в ассортименте VALTEC. Поплавок клапана в режиме естественной циркуляции открыт и не мешает движению теплоносителя. При включении насоса на байпасе клапан перекрывает главный стояк, направляя весь поток через байпас с насосом.

Рис. 9. Установка поплавкового нормально отрытого обратного клапана

Водяные системы отопления с естественной циркуляцией окутаны еще многими мифами, которые предлагаем вам развеять самостоятельно:

  • расширительный бак можно врезать только над главным стояком;
  • в таких системах нельзя ставить мембранный расширительныйбак;
  • регулировать тепловой поток от радиаторов в гравитационных системах нельзя;
  • естественная циркуляция не работает в межсезонье;
  • байпасы перед радиаторами в таких системах недопустимы;
  • водяные теплые полы в гравитационных системах работать не будут.

Автор: В.И. Поляков

Распечатать статью:
Мифы «гравитационки»

Безотказная, гравитационная система отопления для частного дома.

Использование систем отопления с жидким теплоносителем в частных домах сегодня строится на нескольких схемах работы системы. Одной из самых надежных, простых и проверенных временем схем выступает гравитационная система отопления. Основываясь на законах термодинамики гравитационное отопление, получило широкое распространение благодаря небольшому количеству элементов и простоте работ, как по расчету проекта, так и по практическому монтажу. Но, несмотря на кажущуюся простоту для правильной работы необходимо учитывать много моментов, о которых и пойдет речь в этой статье.

Принцип работы гравитационной системы отопления частного дома

Гравитационная система отопления частного дома основана на двух физических принципах. Первый заключается в том, что вещества при разных температурах имеют разную плотность. Второй заключается в том, что давление в системе создается из-за разницы уровней нахождения жидкости, и чем больше разница между верхней и нижней точки, тем выше давление в системе.

Первый принцип гравитационной системы отопления выражается в том, что при нагревании жидкого теплоносителя, и это не обязательно должна быть вода, он меняет свою плотность. Вода в обычном состоянии при температуре 20 градусов имеет плотность большую, чем нагретая до 45 градусов, при нагреве до 80 градусов разница будет такова, что потребуется дополнительный объем для воды. В таком случае теплоноситель одной и той же массы будет занимать разный объем, из-за чего он начинает расширяться и вытесняться за пределы теплообменника. В замкнутом пространстве после начала движения нагретого теплоносителя его место занимает охлажденный теплоноситель. Так под действием нагрева возникает поток, и гравитационная система отопления начинает работать.

Второй принцип работы этой схемы начинает работать с того момента, как только теплоноситель начинает движение. По мере нагрева, у воды или антифриза скорость движения увеличивается, поскольку температура растет быстро и расширение объема заставляет вытеснять жидкость за пределы водяной рубашки котла с большей скоростью. Покидая объем котла, жидкость вырывается по вертикальной трубе к расширительному баку. Достигнув уровня ответвления, жидкость заполняет объем трубы и по петле напора устремляется к трубопроводам ведущим к радиаторам отопления, создавая необходимое давление. Учитывая разницу высот между точкой попадания жидкости в петлю напора и нижней точкой слива создавшееся давление дополнительно воздействует на холодный теплоноситель.

Постепенно прогреваясь, система уменьшает разницу температур между холодным и горячим теплоносителем, и таким образом, скорость движения жидкости в системе увеличивается до максимальной и даже может достигнуть 1 метра в секунду.

Самотечное отопление плюсы гравитационной системы отопления

Прежде чем рассматривать положительные качества самотечных систем отопления с естественной циркуляцией воды стоит отдельно рассмотреть все минусы системы. Для многих первый и главный недостаток гравитационной системы отопления является ее архаичность. Действительно, это одна из самых древних систем отопления использующих жидкий теплоноситель. Именно с этой системы были в дальнейшем выработаны одно и двухтрубные схемы разводки, именно эта система использовалась для массовой установки, когда промышленность освоила отопительные твердотопливные а немного позже и газовые котлы отопления. Но с другой стороны гравитационная система отопления является и одной из самых надежных – срок ее эксплуатации составляет в среднем 45-50 лет. То есть ровно столько, сколько времени необходимо, чтобы под действием теплоносителя металлические трубы потеряли свою герметичность.

Второй момент заключается в невысоком коэффициенте полезного действия гравитационной системы отопления. Действительно, сама схема, основанная на естественной циркуляции воды, подразумевает инертность процесса прогрева помещения, пока отопительный котел наберет необходимую мощность, а разница температур между нагретым и охлажденным теплоносителем достигнет минимума, пройдет довольно много времени. Но с другой стороны, даже после того как котел перестанет поддерживать горение процесс циркуляции продолжается, при этом, большой объем воды в системе будет остывать намного дольше чем в системе с принудительной циркуляцией.

Еще одни минус может записать в свой актив гравитационная система отопления из-за своей громоздкости. На практике, при одинаковой площади отапливаемого помещения система с принудительной циркуляцией по сравнению с самотечной, будет занимать гораздо меньше места. В гравитационной системе отопления кроме батарей будут размещаться и трубы верхней разводки, без которых создание необходимого давления жидкости невозможно.

Ну и конечно, вопрос контроля температуры в отдельных радиаторах, и возможность ее регулировки. Гравитационная система отопления в классическом виде с однотрубной схемой постройки не может обеспечить такую функцию из-за невозможности перекрытия отдельного радиатора.

Но с другой стороны, это идеальная система для установки в домах, где нет электричества или постоянно возникают проблемы с его подачей. Гравитационная система отопления способна работать и без электричества, поскольку основной силой движения теплоносителя по системе выступает не циркуляционный насос, а тепловое расширение объема теплоносителя.

Большой объем теплоносителя в системе позволяет обеспечить плавный прогрев помещения. С другой стороны, такой объем нагретого теплоносителя и остывает гораздо медленнее, чем объем системы с принудительной циркуляцией. Особенно ярко это проявляется при отключении электричества или затухании топлива в топке. Система с принудительной циркуляцией остывает в 3-4 раза быстрее, чем такая архаическая гравитационная система отопления.

Это свойство часто используется при временном пребывании в доме – просто вместо обычной воды в систему вливается антифриз, и даже после полного остывания ни трубам, ни радиаторам угроза разрыва из-за замерзания воды не грозит.

Ну и конечно, просто необходимо отметить, что такая система просто безотказна в работе. При правильной ее эксплуатации она может прослужить около 50 лет, при этом у нее всего два фактора риска. Первый – это угроза перегрева котла, но и здесь это в основном зависит от человеческого фактора, а не от системы. Второй – это замерзание теплоносителя, но и в этом случае, применение антифриза сводит риск этой аварии практически к нулю.

Упрощенный вариант системы отопления с естественной циркуляцией теплоносителя

При выборе гравитационной системы отопления частного необходимо провести ряд расчетов, чтобы уяснить, насколько система будет обеспечивать прогрев помещения. При нормальных условиях в схеме построения разводки трубопроводов учитываются объемы отдельных помещений и мощность радиаторов отопления, устанавливаемых в них. При установке радиаторов одного номинала гравитационная система отопления будет прогревать помещения неравномерно. Первый, самый ближний к котлу радиатор будет нагреваться больше, а в самом крайнем от котла радиаторе температура теплоносителя будет существенно ниже. Именно поэтому, при подборе отопительных приборов, первые устанавливаются меньшей мощности, а те, которые дальше, должны быть мощнее.

Немаловажно в выборе элементов конструкции правильно подобрать и расширительный бак. При расчете объема расширительного бака принято брать за основу соотношение 1/10. То есть при объеме воды в системе около 250 литров, объем бака должен быть не меньше 25 литров.

Гравитационная система отопления очень требовательна к материалам конструкции. Прежде всего, это касается труб и трубопроводов. Большой объем теплоносителя и низкое давление в системе требуют, чтобы циркуляция осуществлялась с наименьшими потерями, а это возможно, либо в стальных, либо в полипропиленовых трубах. Но и здесь имеются определенные ограничения. Так, стальные трубы должны соединяться либо сварным способом газовой или электросваркой, либо при помощи резьбовых соединений. И если первый вид позволяет обеспечить надежное соединение практически без получения сварного шва внутри трубы, то резьбовой способ может создавать большое количество неровностей внутри трубопровода. Что касается полипропиленовой трубы, то у нее есть один существенный недостаток. Этот недостаток касается способности трубы выдерживать высокие температуры – максимальная температура, которая по утверждению производителей может выдержать такая труба это +95 градусов, что не подходит для трубы устанавливаемой сразу после котла.

Но даже несмотря на все эти предостережения, упрощенная схема гравитационной системы отопления существенно отличается от системы принудительной циркуляции.

В состав такой системы обязательно должны входить:

  • Нагревательный котел ( обязательное условие таких систем это наличие котла с большим объемом водогрейной рубашки);
  • Трубы подачи воды большого диаметра 11/2 дюйма;
  • Расширительный бак емкостью 1/10 объема жидкости в системе;
  • Трубы подачи диаметром 1 дюйм;
  • Радиаторы разного размера для обеспечения равномерного прогрева помещений;
  • Труба обратной подачи;
  • Кран слива жидкости;
  • В качестве приборов контроля в системе устанавливаются термометр и манометр в котле, и краны Маевского в радиаторах.

Как видно, система имеет небольшое количество конструктивных элементов и вполне пригодна для того, чтобы собрать ее самостоятельно.

Основные схемы для отопления домов

Сегодня существует несколько видов гравитационных систем отопления. Наиболее популярна самая простая система с напорной петлей и уклоном подающих трубопроводов и труб обратки. Здесь реализуется схема, при которой теплоноситель циркулирует в естественном режиме, а расширительный бак имеет открытый верх. Недостатком этого вида гравитационной системы отопления выступает ее инертность и сложность в реализации. Сложностью реализации в данном случае понимается необходимость выдерживания всех параметров уклонов труб. Так, после того как будет смонтирована напорная петля разводка труб должна делаться с соблюдением наклона 0,05 градуса в сторону от котла. Этого уклона достаточно чтобы обеспечить начальное движение жидкости. Такой же уклон обеспечивается и при прокладке трубопровода обратки.

Такие схемы подразумевают однотрубные варианты построения системы охраны. Более совершенные гравитационные системы отопления подразумевают двухтрубную схему прокладки трубопроводов. Но для этого необходимо обеспечить правильную прокладку магистрального трубопровода. Для нормального функционирования такой системы общая длина подающей трубы должна быть около 25 метров, максимальный размер такой трубы может быть 35 метров. Большая длина трубы будет снижать температуру подачи теплоносителя, для ее прокладки потребуется дополнительный уклон, что потребует в проекте предусмотреть дополнительный объем чердачного помещения или объема внутри комнаты.

На что нужно обратить внимание при проектировании гравитационной системы отопления

Основной проблемой эффективной работы гравитационной системы отопления в малоэтажный частных домах выступает неправильное расположение котла и радиаторов относительно друг друга. Одним из важных параметров системы выступает величина циркуляционного напора. Она показывает расстояние от центра отопительного прибора до центра отопительного котла. Чем выше этот показатель, тем эффективнее работа всей системы.

Неэффективность и низкий КПД отопительных котлов как твердотопливных, так и газовых устанавливаемых в гравитационных системах зачастую связан с небольшой разницей в высотах между радиатором и котлом. Так в обычных условиях такой перепад обычно составляет всего 0,2-0,3 метра. Такое положение не дает экономить до 25 % топлива. Большая часть энергоносителей тратится на перегрев жидкости. В тоже время, если увеличить перепад высот на 0,5 метра и довести его до 0,7-0,8 метра, то эффективность повысится на 6-11%, а при перепаде в 2,0 метра появляется возможность сэкономить до 20% энергии. Именно поэтому при проектировании систем отопления гравитационного типа размещение котла планируется в самой нижней точке, чаще всего в подвальном помещении.

Вместе с тем, рассматривая все варианты и способы устройства систем отопления частного дома, несмотря на кажущуюся простоту реализовывать этот проект рекомендуется доверить профессионалам. Опыт и наличие специального оборудования помогут обеспечить быстрый и главное легкий монтаж всего оборудования, сведя к минимуму риск ошибок.

Гравитационная система отопления. Все, что нужно о ней знать.

Приветствую всех читателей моего блога! Сегодня в этой статье я расскажу вам о гравитационных системах отопления. А конкретно о том, как они работают и где их целесообразно применять. Постараюсь, как обычно, быть кратким, но информативным, чтобы без лишней «воды» дать вам основное, что нужно о них знать. Для краткости я буду использовать либо жаргонизм «гравитационка», либо сокращение ГСО. Делается это для того, чтобы не перегружать текст длинными словами. Итак, поехали!

Принцип работы гравитационной системы отопления.

ГСО — наиболее архаичная система водяного отопления. Впервые ее применили в первой половине 19 века для обогрева оранжерей. Физический принцип ее действия основывается на том, что разогретая жидкость расширяется и меняется ее плотность (жидкость становится «легче»). Внутри котла происходит разделение по плотности — нагретый теплоноситель поднимается по подающей магистрали, а холодный стремится вниз по обратной в сторону котла. Из-за эффекта непрерывности струи начинается круговое движение жидкости — циркуляция. Скорость циркуляции в ГСО зависит от разницы уровней (ниже на рисунке обозначено как H) центра нагрева (котла) и центра охлаждения (радиаторов). Чем больше разница уровней, тем больше будет скорость жидкости внутри системы.

Как устроена гравитационная система отопления.

Устроена ГСО достаточно просто. Чтобы не томить вас лишними словами сразу перейдем к рисунку:

На рисунке изображена двухтрубная гравитационная система (ранее я уже писал статью про двухтрубные и однотрубные системы рекомендую ее к прочтению). В самой верхней точке системы располагают в классическом варианте расширительный бак открытого типа. От котла вверх уходит подающая труба (на рисунке горячая магистраль), по которой разогретый теплоноситель идет к приборам отопления. В них он остывает и идет обратно в котел по обратной трубе (на рисунке обратная магистраль). В двухтрубной ГСО магистрали прокладываются с соблюдением уклонов. У подающей магистрали уклоны делаются в сторону отопительных приборов, у обратной магистрали уклон идет в сторону котла.

Теперь давайте рассмотрим однотрубный вариант гравитационной системы отопления:

Работает однотрубная ГСО также, как и двухтрубная. Отличием здесь будет наличие разгонного коллектора — специальной трубы в, которой увеличивается скорость теплоносителя под действием силы тяжести. Из-за последовательного прохождения радиаторов, температура теплоносителя снижается от начального радиатора к конечному. Чтобы это компенсировать необходимо увеличивать количество секций у последних радиаторов, а это не всегда возможна из-за ограниченности пространства.

Возможен также вариант ГСО с мембранным расширительным баком вместо открытого. В этом случае желательно, чтобы котел был рассчитан на давление 3 атмосферы, так как придется устанавливать группу безопасности на подающую магистраль. Предохранительный клапан в стандартной группе безопасности как раз рассчитан на 3 атмосферы. Если же ваш котел рассчитан на открытую систему (на давление 1 — 1,5 атм), то при установке мембранного бака и стандартной группы он может выйти из строя. Мембранный расширительный бак может быть расположен в любом удобном месте ГСО, а в верхней точке системы необходимо установить воздухоотводчик.

Давайте двигаться дальше. Поговорим о том, как рассчитывать гравитационную систему и как выбирать диаметр труб для нее.

Расчет параметров гравитационной системы отопления.

Если вы собрались сделать гравитационную систему отопления, то вам необходимо сделать хотя-бы минимум расчетов. А лучше вообще сделать полноценный проект. Это будет идеал и если ваш бюджет потерпит такие траты, то я их весьма рекомендую. Возможно уже на этапе проекта инженер выявит возможные сложности в реализации и вам удастся избежать переделок. Итак, давайте начнем рассматривать формулы!

Первая формула, которая нам понадобится:

Расшифровывается она следующим образом:

  • pниж — давление на нижнем уровне.
  • pвер — давление на верхнем уровне.
  • ρ — плотность жидкости.
  • g — ускорение свободного падения 9,8 м/с².
  • h — разность высот между уровнями.

По этой формуле определяется гидростатическое давление в системе отопления. Из нее следует очевидный вывод, что давление в системе будет тем больше, чем больше ее высота. Но теплоноситель (в частном случае вода) циркулирует по ГСО и этот момент учитывает равенство Бернулли, которое выглядит так:

Уравнение Бернулли показывает, что полное давление зависит не только от высоты, но и от скорости движения жидкости в системе. Однако, вклад гидродинамического давления в полное значительно меньше, чем гидростатического (менее 5%) поэтому им пренебрегают для простоты расчетов. Как известно, циркуляция в ГСО происходит из-за разности давлений, создаваемых горячей и холодной водой. Эта разность называется естественным циркуляционным давлением и вычисляется по следующей короткой и простой формуле:

Расшифровывается это так:

  • ρхол — плотность холодной воды.
  • ρгор — плотность горячей воды.
  • Δp — естественное циркуляционное давление.

Плотности воды при определенных значениях температуры являются справочными величинами, которые просто узнать из справочников. Эта формула подходит для расчета естественного циркуляционного давления в одноэтажном доме, где имеется один центр охлаждения. в двухэтажном доме таких центров будет уже 2 и формула примет следующий вид:

  • h1, ρ1 — уровень центра охлаждения плотность воды на первом этаже.
  • h2, ρ2 — уровень центра охлаждения плотность воды на втором этаже.

После расчета естественного циркуляционного давления необходимо рассчитать расход воды. Делается это следующим образом:

Расшифровка здесь такая:

  • G — расход теплоносителя кг/сек.
  • Q — количество теплоты, генерируемое котлом.
  • С — удельная теплоемкость.
  • Δt — разность температур между горячим и остывшим теплоносителем.

Для наглядности предлагаю посмотреть короткое видео с примером расчета ГСО:

Выбор труб для гравитационной системы отопления.

При выборе труб нам необходимо, чтобы они обеспечивали необходимый расход воды, а естественного циркуляционного давления должно хватать для компенсации потерь на трение о стенки и преодоление местных сопротивлений (тройники, отводы, вентиля и так далее). Падение давления, вызванное трением определяется по равенству Дарси Вейсбаха:

  • ΔP — падение давления на участке трубопровода.
  • λ — коэффициент потерь на трение по длине участка. Табличная величина.
  • L — длина участка.
  • D — диаметр трубы на участке.
  • V — скорость жидкости в трубе.
  • ρ — плотность жидкости.

Общие потери давления в системе будут определяться как сумма потерь на всех участках труб и местных сопротивлениях (потери в местных сопротивлениях находятся по формуле ΔPарматура = ξ*(v²ρ/2), где ξ — табличные коэффициенты) . Об этом я писал в своей статье, посвященной гидравлическим расчетам. Для того, чтобы появилась циркуляция, естественное давление циркуляции должно превысить общие потери давления в ГСО:

Δp ≥ ΔP + ΔPарматура

Для того, чтобы сэкономить время, строители давно разработали специальные таблицы, которым можно быстро выбрать необходимый диаметр трубы. Скажу сразу, что в ГСО металлическая труба начинается от 50-го диаметра, а пластиковые трубы могут использоваться начиная от диаметра 63 мм. Их самым главным недостатком будет их цена. Кроме того, есть определенные сложности с их монтажом. Тут нужно будет привлекать опытного человека, который сможет соблюсти все уклоны и прочие нюансы системы.

Итоги статьи.

Эта статья, конечно же, не претендует на полноту освещения вопроса и призвана дать читателю только начальные знания о гравитационных системах отопления. Поэтому прошу не судить строго. Главным преимуществом такого отопления является его независимость от работы насосов и долговечность системы. Ее наиболее удобно применять в глухих уголках нашей страны, где могут возникать долгие перебои с электроэнергией. Главный недостаток ГСО — высока начальная стоимость материалов и сложности монтажа. Но долгий срок ее службы вполне все окупает. На этом пока все, жду ваших вопросов в комментариях! Не забываем делиться статьей через социальные сети.

2 Replies to “Гравитационная система отопления. Все, что нужно о ней знать.”

Везде пишут, что можно заменить стальную трубу полипропиленовой на размер меньше, т.е. если стальная 40, полипропилен берём 32. Обьясняют это меньшим гидравлическим сопротивлением полипропилена. Вы в конце статьи приходите к прямо противоположному выводу: 50-й стальной, соответствует 63 полипропилен…

Спасибо за комментарий, Михаил! Действительно, везде рекомендуют брать полипропиленовую трубу на размер меньше стальной, но тут идет речь о внутреннем диаметре. У 63-й полипропиленовой трубы внутренний проход равен 42 мм, как раз на размер меньше чем у 50-й стальной поэтому тут никакого противоречия нет. Просто люди иногда путаю наружный диаметр и внутренний

Гравитационное отопление

С уществует мнение, что гравитационное отопление является анахронизмом в наш компьютерный век. Но что делать, если вы построили дом в местности, где пока нет электричества или электроснабжение осуществляется с большими перебоями? В этом случае придется вспомнить дедовский способ организации отопления. Вот о том, как организовать гравитационное отопление, мы и поговорим в этой статье.

Гравитационная система отопления

Гравитационная система отопления была изобретена в 1777 г. французским физиком Боннеманом (Bonneman) и предназначалась для обогрева инкубатора.

Но только с 1818 г., гравитационная система отопления стала повсеместно применяться в Европе, правда пока только для теплиц и оранжерей. В 1841 году англичанин Гудом (Hood) разработал методику теплового и гидравлического расчета систем с естественной циркуляцией. Ему удалось теоретически доказать пропорциональность скоростей циркуляции теплоносителя квадратным корням из разницы высот центра нагрева и центра охлаждения, то есть перепада высот между котлом и радиатором. Естественная циркуляция теплоносителя в системах отопления была достаточно хорошо изучена и имела мощную теоретическое обоснование.

Но с появлением насосных отопительных систем интерес ученых к гравитационной системе отопления неуклонно угасал. В настоящее время, гравитационное отопление поверхностно освещают в институтских курсах, что привело к неграмотности специалистов, осуществляющих монтаж данной системы отопления. Стыдно сказать, но монтажники, строящие гравитационное отопление в основном используют советы «бывалых» да те скупые требования, которые изложены в нормативных документах. Стоит помнить, что нормативные документы только диктуют требования и не дают объяснение причин появления того или иного явления. В связи с этим в среде специалистов бытует достаточное количество заблуждений, которые и хотелось немного развеять.

Классическое двухтрубное гравитационное отопление

Для того, чтобы понять принцип работы гравитационной системы отопления, рассмотрим пример классической двухтрубной гравитационной системы, со следующими исходными данными:

  • начальный объем теплоносителя в системе – 100 литров;
  • высота от центра котла до поверхности нагретого теплоносителя в баке Н = 7 м;
  • расстояние от поверхности нагретого теплоносителя в баке до центра радиатора второго яруса h1 = 3 м,
  • расстояние до центра радиатора первого яруса h2 = 6 м.
  • Температура на выходе из котла – 90 °С, на входе в котел – 70 °C.

Действующее циркуляционное давление для радиатора второго яруса можно определить по формуле:

Для радиатора первого яруса оно составит:

Чтобы расчет получился более точным, необходимо учесть остывание воды в трубопроводах.

Прокладка трубопровода при гравитационном отоплении

Многие специалисты считают, что прокладка трубопровода должна происходить с уклоном по направлению движения теплоносителя. Не спорю, что в идеале так и должно быть, но на практике это требование не всегда удается выполнить. Где-то балка мешает, где-то потолки сделаны в разных уровнях. Что же будет, если смонтировать подающий трубопровод с обратным уклоном?

Уверен, что ничего страшного не произойдет. Циркуляционное давление теплоносителя, если и снизится, то совсем на небольшую величину (несколько паскалей). Произойдет это за счет паразитного влияния, остывающего в верхнем розливе теплоносителя. При такой конструкции воздух из системы придется удалять с помощью проточного воздухосборника и воздухоотводчика. Такое устройство показано на рисунке. Здесь дренажный кран предназначен для выпуска воздуха в момент заполнения системы теплоносителем. В рабочем режиме этот кран должен быть закрыт. Такая система останется полностью работоспособной.

Движение охлажденного теплоносителя

Одним из заблуждений является то, что в системе с естественной циркуляцией охлажденный теплоноситель вверх двигаться не может. С эти я тоже не согласен. Для циркуляционной системы понятие верх и низ весьма условное. На практике, если обратный трубопровод на каком-то участке поднимается, то где-то он на эту же высоту опускается. При этом гравитационные силы уравновешиваются. Трудность только в преодолении местных сопротивлений на поворотах и линейных участках трубопровода. Все это, а также возможное остывание теплоносителя на участках подъема должно учитываться в расчетах. Если система грамотно рассчитана, то схема, представленная на рисунке ниже, имеет право на существование. К слову сказать, в начале прошлого века такие схемы достаточно широко применялись, несмотря на свою слабую гидравлическую устойчивость.

Расположение подающего трубопровода

Часто можно услышать мнение, что в гравитационных системах отопления подающий трубопровод должен проходить над всеми ярусами радиаторов. С моей точки зрения, это совсем не обязательно. Расположение подающего трубопровода с надлежащим уклоном под потолком верхнего этажа или на чердаке позволит удалить воздух из системы через открытый расширительный бак. Но проблему удаления воздуха можно решить и с помощью автоматического воздухоотводчика или отдельной воздушной линии.

Расположение радиаторов

Говорят, что при естественной циркуляции теплоносителя, радиаторы, в обязательном порядке, должны располагаться выше котла. Данное утверждение справедливо только тогда, когда отопительные приборы расположены в один ярус. Если количество ярусов два и более, радиаторы нижнего яруса можно располагать и ниже котла, что, обязательно должно быть проверено гидравлическим расчетом.

В частности, для примера, показанного на рисунке ниже, при H = 7 м, h1 = 3 м, h2 = 8 м, действующее циркуляционное давление составит:

ρ1 = 965 кг/м 3 – плотность воды при 90 °С;

ρ2 = 977 кг/м 3 – плотность воды при 70 °С;

ρ3 = 973 кг/м 3 – плотность воды при 80 °С.

Получившееся циркуляционного давления достаточно для работоспособности приведенной системы.

Гравитационное отопление — замена воды на антифриз

Где-то прочитал, что гравитационное отопление, рассчитанное на воду, можно безболезненно перевести на антифриз. Хочу вас предостеречь от таких действий, так как без надлежащего расчета такая замена может привести к полному отказу системы отопления. Дело в том, что растворы на гликолевой основе обладают значительно большей вязкостью, чем вода. Кроме того, удельная теплоемкость этих жидкостей ниже, чем у воды, что потребует, при прочих равных условиях, повышения скорости циркуляции теплоносителя. Эти обстоятельства существенно увеличивают расчетное гидравлическое сопротивление системы, заполненной теплоносителями с низкой температурой замерзания.

Использование открытого расширительного бака

Практика показывает, что в открытый расширительный бак необходимо постоянно доливать теплоноситель, так как он испаряется. Согласен что, это действительно большое неудобство, но его можно легко устранить. Для этого можно использовать воздушную трубку и гидравлический затвор, устанавливаемый, ближе к нижней точке системы, рядом с котлом. Данная трубка служит воздушным демпфером между гидравлическим затвором и уровнем теплоносителя в баке. Поэтому, чем больше ее диаметр, тем меньше будет уровень колебаний уровня в бачке гидрозатвора. Особо продвинутые умельцы умудряются закачивать в воздушную трубку азот или инертные газы, тем самым предохраняя систему от проникновения воздуха.

Использование циркуляционного насоса в гравитационном отоплении

В разговоре с одним монтажником я услышал, что насос, установленный на байпасе главного стояка, не может создать эффект циркуляции, так как установка запорной арматуры на главном стояке между котлом и расширительным баком запрещена. Поэтому можно поставить насос на байпасе обратной линии, а между врезками насоса установить шаровой кран. Такое решение не очень удобно, так как каждый раз перед включением насоса надо не забыть перекрыть кран, а после выключения насоса – открыть. При этом установка обратного клапана невозможна из-за его значительного гидравлического сопротивления. Чтобы выйти из этого положения, мастера пытаются переделать обратный клапан в нормально открытый. Такие «модернизированные» клапаны создадут в системе звуковые эффекты из-за постоянного «хлюпанья» с периодом, пропорциональным скорости теплоносителя. Могу предложить другое решение. На главном стояке между врезками байпаса устанавливается поплавковый обратный клапан для гравитационных систем. Поплавок клапана в режиме естественной циркуляции открыт и не мешает движению теплоносителя. При включении насоса на байпасе клапан перекрывает главный стояк, направляя весь поток через байпас с насосом.

В этой статье я рассмотрел далеко не все заблуждения, существующие у специалистов, монтирующих гравитационное отопление. Если статья вам понравилась, готов продолжить ее ответами на ваши вопросы.

В следующей статье я расскажу о строительных материалах.

Читайте также:  Оштукатуриванию кирпичной печи: подготовка раствора и советы по нанесению
Ссылка на основную публикацию