Гидравлический расчет системы отопления: примеры, программы

Гидравлический расчёт системы отопления

Сегодня разберём, как произвести гидравлический расчёт системы отопления. Ведь по сей день распространяется практика проектирования отопительных систем по наитию. Это в корне неверный подход: без предварительного расчёта мы задираем планку материалоёмкости, провоцируем нештатные режимы работы и лишаемся возможности добиться максимальной эффективности.

Цели и задачи гидравлического расчёта

С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.

Практические цели гидравлического расчёта таковы:

  1. Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.
  2. Определить, какое влияние оказывает изменение режима работы каждого из устройств на весь комплекс в целом.
  3. Установить, какая производительность и рабочие характеристики отдельных узлов и устройств будут достаточными для выполнения отопительной системой своих функций без значительного удорожания и обеспечения необоснованно высокого запаса надёжности.
  4. В конечном итоге — обеспечить строго дозированное распределение тепловой энергии по различным зонам отопления и гарантировать, что это распределение будет сохраняться с высоким постоянством.

Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.

Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.

Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.

Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Определение расхода и скорости движения теплоносителя

Наиболее известная методика расчёта гидравлических систем основывается на данных теплотехнического расчёта, которым определяется норма восполнения теплопотерь в каждом помещении и, соответственно, тепловая мощность радиаторов, в них установленных. На первый взгляд всё просто: мы имеем общее значение тепловой мощности и затем дозируем поступление теплоносителя к каждому нагревательному прибору. Для большего удобства предварительно строится аксонометрический эскиз гидравлической системы, который аннотируется требуемыми показателями мощности радиаторов или петель водяного тёплого пола.

Аксонометрическая схема системы отопления

Переход от теплотехнического расчёта к гидравлическому осуществляется путём введения понятия массового потока, то есть некой массы теплоносителя, подводимого к каждому участку отопительного контура. Массовый поток есть отношение требуемой тепловой мощности к произведению удельной теплоёмкости теплоносителя на разность температур в подающем и возвратном трубопроводе. Таким образом, на эскизе отопительной системы отмечают ключевые точки, для которых указывается номинальный массовый поток. Для удобства параллельно определяется и объёмный поток с учётом плотности используемого теплоносителя.

  • G — расход теплоносителя, кг/с
  • Q — необходимая тепловая мощность, Вт
  • c — удельная теплоёмкость теплоносителя, для воды принимаемая 4200 Дж/(кг·°С)
  • ΔT = (t2 – t1) — разность температур между подачей и обраткой, °С

Логика здесь проста: чтобы доставить необходимое количество тепла к радиатору, нужно сперва определить объём или массу теплоносителя с заданной теплоёмкостью, проходящего через трубопровод за единицу времени. Для этого требуется определить скорость движения теплоносителя в контуре, которая равна отношению объёмного потока к площади сечения внутреннего прохода трубы. Если расчёт скорости ведётся относительно массового потока, в знаменатель нужно добавить значение плотности теплоносителя:

V = G / (ρ · f)

  • V — скорость движения теплоносителя, м/с
  • G — расход теплоносителя, кг/с
  • ρ — плотность теплоносителя, для воды можно принять 1000 кг/м 3
  • f — площадь сечения трубы, находится по формуле π­·r 2 , где r — внутренний диаметр трубы, делённый на два

Данные о расходе и скорости необходимы для определения условного прохода труб развязки, а также подачи и напора циркуляционных насосов. Устройства принудительной циркуляции должны создавать избыточное давление, позволяющее преодолеть гидродинамическое сопротивление труб и запорно-регулирующей арматуры. Наибольшую сложность представляет гидравлический расчёт систем с естественной (гравитационной) циркуляцией, для которых требуемое избыточное давление рассчитывается по скорости и степени объёмного расширения нагреваемого теплоносителя.

Потери напора и давления

Расчёт параметров по описанным выше соотношениям был бы достаточен для идеальных моделей. В реальной жизни и объёмный поток, и скорость теплоносителя всегда будут отличаться от расчётных в разных точках системы. Причина тому — гидродинамическое сопротивление движению теплоносителя. Оно обусловлено рядом факторов:

  1. Силами трения теплоносителя о стенки труб.
  2. Местными сопротивлениями протоку, образуемыми фитингами, кранами, фильтрами, термостатирующими клапанами и прочей арматурой.
  3. Наличием разветвлений присоединительного и ответвительного типов.
  4. Турбулентными завихрениями на поворотах, сужениях, расширениях и т. д.

Задача нахождения падения давления и скорости на разных участках системы по праву считается наиболее сложной, она лежит в области расчётов гидродинамических сред. Так, силы трения жидкости о внутренние поверхности трубы описываются логарифмической функцией, учитывающей шероховатость материала и кинематическую вязкость. С расчётами турбулентных завихрений всё ещё сложнее: малейшее изменение профиля и формы канала делает каждую отдельно взятую ситуацию уникальной. Для облегчения расчётов вводится два опорных коэффициента:

  1. Кvs — характеризующий пропускную способность труб, радиаторов, разделителей и прочих участков, приближенных к линейным.
  2. Кмс — определяющий местные сопротивления в различной арматуре.

Эти коэффициенты указываются производителями труб, клапанов, кранов, фильтров для каждого отдельно взятого изделия. Пользоваться коэффициентами достаточно легко: для определения потери напора Кмс умножают на отношение квадрата скорости движения теплоносителя к двойному значению ускорения свободного падения:

Δhмс = Кмс (V 2 /2g) или Δpмс = Кмс (ρV 2 /2)

  • Δhмс — потери напора на местных сопротивлениях, м
  • Δpмс — потери напора на местных сопротивлениях, Па
  • Кмс — коэффициент местного сопротивления
  • g — ускорение свободного падения, 9,8 м/с 2
  • ρ — плотность теплоносителя, для воды 1000 кг/м 3

Потеря напора на линейных участках представляет собой отношение пропускной способности канала к известному коэффициенту пропускной способности, причём результат деления нужно возвести во вторую степень:

Р = (G/Kvs) 2

  • Р — потеря напора, бар
  • G — фактический расход теплоносителя, м 3 /час
  • Kvs — пропускная способность, м 3 /час

Предварительная балансировка системы

Важнейшей финальной целью гидравлического расчёта системы отопления является вычисление таких значений пропускной способности, при которых в каждую часть каждого контура отопления поступает строго дозированное количество теплоносителя с определённой температурой, чем обеспечивается нормированное выделение тепла на нагревательных приборах. Эта задача лишь на первый взгляд кажется сложной. В действительности балансировка выполняется за счёт регулировочных клапанов, ограничивающих проток. Для каждой модели клапана указывается как коэффициент Kvs для полностью открытого состояния, так и график изменения коэффициента Kv для разной степени открытия регулировочного штока. Изменяя пропускную способность клапанов, которые, как правило, устанавливаются в точках подключения нагревательных приборов, можно добиться искомого распределения теплоносителя, а значит, и количества переносимой им теплоты.

Есть, однако, небольшой нюанс: при изменении пропускной способности в одной точке системы меняется не только фактический расход на рассматриваемом участке. Из-за снижения или увеличения протока в некой степени меняется баланс во всех остальных контурах. Если взять для примера два радиатора с разной тепловой мощностью, соединённых параллельно при встречном движении теплоносителя, то при увеличении пропускной способности прибора, стоящего в цепи первым, второй получит меньше теплоносителя из-за увеличения разницы в гидродинамическом сопротивлении. Напротив, при снижении протока за счёт регулировочного клапана все остальные радиаторы, стоящие по цепочке дальше, получат больший объём теплоносителя автоматически и будут нуждаться в дополнительной калибровке. Для каждого типа разводки действуют свои принципы балансировки.

Программные комплексы для расчётов

Очевидно, что выполнение расчётов вручную оправдано только для малых систем отопления, имеющих максимум один или два контура с 4–5 радиаторами в каждом. Более сложные системы отопления тепловой мощностью свыше 30 кВт требуют комплексного подхода при расчёте гидравлики, что расширяет спектр используемых инструментов далеко за пределы карандаша и листа бумаги.

Danfoss C.O. 3.8

На сегодняшний день существует достаточно большое количество программного обеспечения, предоставляемого крупнейшими производителями отопительной техники, такими как Valtec, Danfoss или Herz. В подобных программных комплексах для расчёта поведения гидравлики используется та же методология, которая была описана в нашем обзоре. Сначала в визуальном редакторе моделируется точная копия проектируемой системы отопления, для которой указываются данные о тепловой мощности, типе теплоносителя, протяжённости и высоте перепадов трубопроводов, используемой арматуре, радиаторах и змеевиках тёплого пола. В библиотеке программы имеется широкий спектр гидротехнических устройств и арматуры, для каждого изделия производитель заблаговременно определил рабочие параметры и базовые коэффициенты. При желании можно добавить и сторонние образцы устройств, если для них известен требуемый перечень характеристик.

В финале работы программа даёт возможность определить подходящий условный проход труб, подобрать достаточную подачу и напор циркуляционных насосов. Расчёт завершается балансировкой системы, при этом в ходе симуляции работы гидравлики происходит учёт зависимостей и влияния изменения пропускной способности одного узла системы на все остальные. Практика показывает, что освоение и использование даже платных программных продуктов оказывается дешевле, чем если бы выполнение расчётов поручалось подрядным специалистам.

Как сделать гидравлический расчет системы отопления

Нужно отметить, что инженерные расчеты систем водоснабжения и отопления никак нельзя назвать простыми, но без них обойтись невозможно, только очень опытный специалист-практик может нарисовать систему отопления «на глазок» и безошибочно подобрать диаметры труб. Это если схема достаточно проста и предназначена для обогрева небольшого дома высотой 1 или 2 этажа. А когда речь идет о сложных двухтрубных системах, то рассчитывать их все равно придется. Эта статья для тех, кто решился самостоятельно выполнить расчет системы отопления частного дома. Мы изложим методику несколько упрощенно, но так, чтобы получить максимально точные результаты.

Цель и ход выполнения расчета

Конечно, за результатами можно обратиться к специалистам либо воспользоваться онлайн-калькулятором, коих хватает на всяких интернет-ресурсах. Но первое стоит денег, а второе может дать некорректный результат и его все равно надо проверять.

Так что лучше набраться терпения и взяться за дело самому. Надо понимать, что практическая цель гидравлического расчета – это подбор проходных сечений труб и определение перепада давления во всей системе, чтобы верно выбрать циркуляционный насос.

Примечание. Давая рекомендации по выполнению вычислений подразумевается, что теплотехнические расчеты уже сделаны, и радиаторы подобраны по мощности. Если же нет, то придется идти старым путем: принимать тепловую мощность каждого радиатора по квадратуре помещения, но тогда точность расчета снизится.

Общая схема расчета выглядит таким образом:

  • подготовка аксонометрической схемы: когда уже выполнен расчет отопительных приборов, то известна их мощность, ее надо нанести на чертеж возле каждого радиатора;
  • определение расхода теплоносителя и диаметров трубопроводов;
  • расчет сопротивления системы и подбор циркуляционного насоса;
  • расчет объема воды в системе и вместительности расширительного бака.
Читайте также:  Утеплитель Карбон: характеристики, разнообразие материалов, область применения

Любой гидравлический расчет системы отопления начинается со схемы, нарисованной в 3 измерениях для наглядности (аксонометрия). На нее наносятся все известные данные, в качестве примера возьмем участок системы, изображенный на чертеже:

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: http://dwg.ru/dnl/11875

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Примечание. Двух – и однотрубная система отопления рассчитываются одинаково, по длине трубы во всех ветвях, а в первом случае — прямой и обратной магистрали.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Расчет расширительного бака

Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.

Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.

Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину. Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть. То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.

Заключение

Многие, прочитав данную статью, могут отказаться от намерения считать гидравлику самостоятельно ввиду явной сложности процесса. Рекомендация для них – обратиться к специалисту-практику. Те же, кто проявил желание и уже сделал расчет тепловой мощности отопления на здание, наверняка справятся и с этой задачей. Но готовую схему с результатами все равно стоит показать опытному монтажнику для проверки.

Гидравлический расчет системы отопления программа скачать

Программы для проектирования отопительных систем и водообеспечения. презентация

1 Программы для проектирования отопительных систем и водообеспечения

2 Быстрый выбор радиаторов

3 Audytor SDG нужна для быстрого выбора радиаторов в разных типах строений Никаких специализированных знаний не потребуется. Необходимо иметь информацию про размеры и назначении помещений, количестве окон и стен снаружи Размер и кол-во приборов в каждом индивидуальном помещении Общую спецификацию оборудования Расчетные тепловые нагрузки по индивидуальным помещениям Технические параметры по избранному оборудованию Назначение программы Audytor SDG Какие знания необходимы для работы в программе Audytor SDG Какую данные можно получить в результате работы в программе Audytor SDG

4 Кому может быть полезна программа Audytor SDG Проектировщикам – для быстрого расчета количества и размера радиаторов в проекте (к примеру на стадии А) 3аказчикам – чтобы сравнить и выбора оборудования Торговым менеджерам оборудования для отопления – для возможности быстрого выбора отопительных приборов и расчета стоимости Каждому желающему –для выбора и расчета размера или количества секций отопительных приборов в собственном доме

5 ОБЩИЕ ДАННЫЕ Адрес объекта

6 ОБЩИЕ ДАННЫЕ Климатическая территория

7 ОБЩИЕ ДАННЫЕ Ветровые условия

8 ОБЩИЕ ДАННЫЕ Тепловая защита строения

9 ОБЩИЕ Эти параметры системы обогрева

10 ОБЩИЕ ДАННЫЕ Степень остекления стен снаружи

11 ОБЩИЕ ДАННЫЕ Степень остекления стен снаружи

12 ОБЩИЕ ДАННЫЕ Состояние окон

13 ОБЩИЕ ДАННЫЕ Высота помещений принимаемая по умолчанию

14 ОБЩИЕ ДАННЫЕ Расстояние от подоконника до пола

15 ОБЩИЕ ДАННЫЕ Вид радиатора принимаемый по умолчанию

16 ОБЩИЕ ДАННЫЕ Расположение радиатора принимаемое по умолчанию

17 ОБЩИЕ ДАННЫЕ Защита радиатора принимаемая по умолчанию

18 ОБЩИЕ ДАННЫЕ Наличие термостатического вентиля

19 Выбор Отопительных приборов Символ помещения

20 Выбор Отопительных приборов Символ помещения

21 Выбор Отопительных приборов Площадь помещения, м 2

22 Выбор Отопительных приборов Высота помещения, м 2 (по умолчанию принимается из Общих данных)

23 Выбор Отопительных приборов Объем помещения, м 3 Оставь поле пустым – программа рассчитает автоматично

24 Выбор Отопительных приборов Этаж

25 Выбор Отопительных приборов Кол-во стен снаружи

26 Выбор Отопительных приборов Степень остекления Степень остекления – процентное соотношение площади окон к площади стен снаружи

27 Выбор Отопительных приборов Наличие и состояние окон Степень остекления – процентное соотношение площади окон к площади стен снаружи — по умолчанию принимается из Общих данных

28 Выбор Отопительных приборов Требуемая теплопроизводительность для отапливания этого помещения, Вт Оставь поле пустым – программа рассчитает автоматично

29 Выбор Отопительных приборов Удельная теплопроизводительность для отапливания этого помещения, Вт Оставь поле пустым – программа рассчитает автоматично

30 Выбор Отопительных приборов Расстояние от подоконника до пола Поле необязательно к наполнению — по умолчанию принимается из Общих данных

31 Выбор Отопительных приборов Самая большая длина радиатора Поле необязательно к наполнению — по умолчанию принимается из Общих данных

32 Выбор Отопительных приборов Расположение радиатора Поле необязательно к наполнению — по умолчанию принимается из Общих данных

33 Выбор Отопительных приборов Защита радиатора Поле необязательно к наполнению — по умолчанию принимается из Общих данных

34 Выбор Отопительных приборов Процентная мощность радиатора Поле необязательно к наполнению, если в помещении 1 прибор

35 Выбор Отопительных приборов Вид радиатора Поле необязательно к наполнению — по умолчанию принимается из Общих данных F1 – вызов каталога радиаторов

36 Выбор Отопительных приборов Длина или численность секций радиатора Ввод размера радиатора ручным способом – по надобности

37 Выбор Отопительных приборов Выбранный радиатор

38 Выбор Отопительных приборов Выбранный размер радиатора Длина (или численность секций), высота, глубина

39 Выбор Отопительных приборов Настоящая теплопроизводительность выбранного радиатора

40 Выбор Отопительных приборов Информация – правильно ли выбран радиатор в этом помещении

41 ИТОГИ Выбора ведомость радиаторов по помещениям

42 ИТОГИ Выбора специфика радиаторов

43 Подготовительный ПРОСМОТР ПЕЧАТИ

44 КАТАЛОЖНЫЕ ДАННЫЕ

46 ДАННЫЕ Об изготовителе И ПРОДУКЦИИ

47 Благодарю ЗА ВНИМАНИЕ

Как проводятся вычисления гидравлического расчета

Существуют некоторые задачи, которые необходимо решить, дабы произвести гидравлический расчет системы отопления:

  1. Определите диаметр труб на всех участках системы (не забудьте учесть при этом скорость перемещения носителя тепла).
  2. Рассчитайте потерю давления.
  3. Решите гидравлическую увязку.
  4. И, конечно же, расход теплоносителя.

Какие существую бесплатные программы для этого?

Как можно было догадаться, данная программа предназначается для быстрого выполнения необходимых расчетов. Вначале необходимо внести все соответствующие настройки и подобрать самые подходящие элементы оборудования. Таким образом, можно создавать абсолютно новые схемы. Более того, уже готовую схему можно корректировать необходимым образом.

В данном ПО гармонично сочетаются оба варианта, позволяя создавать оригинальные проекты и регулировать старые. Программа имеет широчайшие возможности касательно гидравлических расчетов, от расхода теплоносителя до подбора труб необходимого диаметра. Все итоги своей работы можно импортировать в операционную систему в любом виде.

Данная программа имеется в свободном доступе. Она позволяет рассчитать все необходимое для систем вне зависимости от количества труб. Существенным отличием «Герца», выгодно выделяющим его на фоне других аналогов, является то, что вы сможете создавать различные проекты, как в новостройках, так и в реконструированных сооружениях, в которых теплоносителем является именно гликолиевая смесь. Программа была сертифицирована ООО ЦСПС.

Ввод данных очень удобен, так как осуществляется графически. Итоги расчетов визуализируются в виде схем.

С ее помощью вы будете рассчитывать поверхностное или радиаторное . Она состоит в специальном комплекте из четырех аналогичных программ. Итак, рассмотрим возможности программы:

  1. Подбор трубопровода в зависимости от диаметра.
  2. Подбор соответствующих радиаторов.
  3. Она определяет высоту, на которой необходимо размещать насосы.
  4. Различного рода расчеты отопительных поверхностей.
  5. Определение наиболее подходящей температуры.

В отличие от предыдущих вариантов, бесплатно вы можете закачать исключительно пробную версию программы, которая, разумеется, обладает некоторыми ограничениями. Прежде всего, в преимущественном большинстве опций вы не сможете не только импортировать изображение в операционную систему, но даже и распечатать его. Кроме того, в каждом отдельном приложении имеется своеобразный лимит: по три выполненных проекта на одно. Вместе с тем, вы можете видоизменять его бесконечное количество раз, это не воспрещается. И, наконец, готовые проекты будут сохраняться в специальном формате, такое расширение не сможет прочитать никакая другая версия.

Читайте также:  Плоские радиаторы отопления: виды, плюсы и минусы, установка, выбор

В итоге хотелось бы отметить, что гидравлический расчет системы отопления является неотъемлемой частью современной системы регулирования. Дабы выбрать регулирующую арматуру, не имея представления о том, что происходит на рынке в данный момент, вам придется производить расчет по всей площади сооружения, желательно при этом воспользоваться максимально богатой библиотекой. От того, насколько корректные у вас будут данные, будет зависеть работа всей системы.

Вычисления и работы которые нужно выполнить заранее

Гидравлический расчёт – самый трудоёмкий и сложный этап проектирования.

  • Во-первых, определяется баланс отапливаемых комнат и помещений.
  • Во-вторых, необходимо выбрать тип теплообменников или отопительных приборов, а также выполнить их расстановку на плане дома.
  • В-третьих, расчет отопления частного дома предполагает, что уже сделан выбор относительно конфигурации системы, типов трубопроводов и арматуры (регулирующей и запорной).
  • В-четвёртых, должны быть сделан чертёж отопительной системы. Лучше всего, если это будет аксонометрическая схема. На ней должны быть указаны номера, длина расчётных участков и тепловые нагрузки.
  • В-пятых, установлено основное циркуляционное кольцо. Это замкнутый контур, включающий последовательные отрезки трубопровода, направленные к приборному стояку (при рассмотрении однотрубной системы) или к самому удалённому отопительному прибору(если имеет место двухтрубная система) и обратно к источнику тепла.

Расчетная программа ГЕРЦ ГЕРЦ официальный сайт HERZ Armaturen в нашей стране

Сообщаем также, что обновлена база арматуры ГЕРЦ в программе RAUCAD. По вопросам получения новой базы пожелание обращаться к инженеру группы техподдержки отдела внутренних инженерных систем компании ООО «РЕХАУ», г. Москва, тел.: (495) 663-33-88 (доб. 203).

Программа HERZ C.O.

Программа HERZ C.O. нужна для гидравлического расчета одно- и отопительных систем с двумя трубами и охлаждения, во время проектирования новых систем, а еще для регулирования существующих в реконструируемых зданиях (к примеру, после утепления строения), имеет возможность расчета систем, где носителем тепла являются гликолиевые смеси.

Программа дает возможность для выполнения полностью всех гидравлических расчетов оборудования, в рамках которых:

выбираются диаметры трубо-проводов;
анализируется водный расход в проектируемом оборудовании;
определяются потери давления в оборудовании;
определяются гидравлические сопротивления циркуляционных колец, с учетом гравитационного давления, связанного с охлаждением воды в трубопроводах и потребителях тепла;
выбираются настройки регуляторов разницы давления, устанавливаемых в местах подобранных проектировщиком (основание стояков, разветвления и т.д.);
берутся во внимание требуемые авторитеты термостатических вентилей;
уменьшается излишек давления в циркуляционных кольцах путем выбора предварительных настроек вентилей;
принимается во внимание необходимость для оснащения соответствующего сопротивления в плане гидравлики участка с потребителем тепла.

В программе применено много решений, облегчающих и улучшающих работу. Важнейшие из них это:

  • графический процесс ввода данных;
  • представление итогов расчетов на схеме и поэтажных планах;
  • развитая контекстная справочная система, вызывающая информацию, как об индивидуальных командах программы, так и подсказку относительно вводимых данных;
  • многооконная среда, она позволяет одновременно смотреть много типов данных, итогов и т.д.;
  • обычная сотрудничество с принтером и плоттером, функция предварительного просмотра страниц перед тем как печатать и выводом на плоттер;
  • роскошная диагностика ошибок и функция их автоматизированного поиска, как в таблице, так и на схеме;
  • быстрый доступ к каталожным данным труб, радиаторов и арматуры.

Программа HERZ OZC

Программа HERZ OZC служит для определения расчетных потерь тепла индивидуальных помещений в здании, а еще всего строения. Расчет проходит согласно подобающим нормативам. Программа исполняет:

  • расчет коэффициентов передачи тепла для стен, полов, крыш и перекрытий между верхним этажом и чердаком;
  • расчет теплопотерь для индивидуальных помещений;
  • расчет теплопотерь всего строения.

В программе применено много решений, облегчающих и улучшающих работу. Важнейшие из них это:

  • развитая справочная система;
  • роскошный каталог материалов для строительства;
  • функция автоматизированного определения сопротивлений передаче тепла, сопротивлений прослоек воздуха перекрытий между верхним этажом и чердаком, сопротивления грунта;
  • функция автоматизированного создания следующих этажей, копирования помещений, а еще выбора помещений например если во время ввода данных о помещении будет нужно вызвать прочее помещение;
  • опция автоматизированного распределения потерь тепла из помещения с небольшой потребностью в теплопроизводительности (к примеру, коридор) к смежным помещениям, что предоставляет возможность для непосредственного переноса итогов расчетов в программу HERZ C.O.

Программа предоставляет возможность для проведения расчетов потерь тепла огромных строений.

Ниже приводятся ограничения, касающиеся данных:

Предельное количество определяемых ограждений: 16300 Предельное количество слоев в одном ограждении: 16300 Предельное количество помещений: 16300 Предельное количество ограждений в одном помещении: 16300

Итоги расчетов теплопотерь являются выходными данными для программы HERZ C.O служащей для проектирования систем централизованого отопления.

Комплексный расчет отопительных систем, водообеспечения и водоотвода по ГОСТСНиПСП RAUCAD Официальный сайт REHAU

RAUCAD – это профессиональная САПР программа, основывающаяся на AutoCAD, для проектирования и расчётов внутренних инженерных систем. Новый, интегрированный помощник ПО имеет все обязательные функции – от управления проектами, до составления заказных спецификаций и коммерческих предложений. Благодаря инстинктивно понятному интерфейсу Вы будете шажок за шажком вести проектирование как 2D, так и 3D сетей трубопроводов теплоснабжения, водообеспечения, водоотвода и стоков для отвода воды, а еще аксонометрических схем, рассчитывать их просто и быстро. Тепловая дезинфекция сетей циркуляции и гидравлическая балансировка в отопительной сети трубопроводов также входит в возможности программы RAUCAD.

(для установки RAUCAD требуется наличие AutoCAD 2010/2011/2012/2013/2014 версий)

  • Графический расчет систем трубопровода отопления и водообеспечения по СНиПу 41-01-2003, СНиП 2.04.01-85*;
  • Графический расчет систем водоотвода по СНиПу 2.04.01-85*;
  • Графический расчет отопительных систем и низкотемпературных систем отопления;
  • Помощник для проектирования в AutoCAD с базой условных графических обозначений ГОСТ (СПДС);
  • Генератор схем;
  • Модуль расчета систем водоподачи со «шлейфовой разводкой» для устранения застойных зон, опасных с точки зрения возможности роста бактерий-легионелл.

Проектирование отопительных систем

  • Отрисовка планов отопительных систем в AutoCAD;
  • Отрисовка схем отопительных систем в AutoCAD, включая специализированные возможности вычерчивания аксонометрий;
  • Автоматизированный расчет отопительных систем с выбором диаметров труб, с гидравлической регулировкой и выбором балансировочной регулировки по СНиПу. Детальная заказная специфика.

Проектирование систем водоподачи

  • Отрисовка планов систем водоподачи в AutoCAD;
  • Отрисовка схем систем водоподачи в AutoCAD, включая специализированные возможности вычерчивания аксонометрий;
  • Автоматизированный расчет систем водоподачи с выбором диаметров труб по СНиПу. Детальная заказная специфика.

Проектирование систем водоотвода

  • Отрисовка планов систем водоотвода в AutoCAD;
  • Отрисовка схем систем водоотвода в AutoCAD, включая специализированные возможности вычерчивания аксонометрий;
  • Автоматизированный расчет отопительных систем с выбором диаметров труб по СНиПу. Детальная заказная специфика.

Программа по составлению коммерческих предложений и заказных спецификаций REHAU

  • Составление спецификаций для заказа со склада;
  • Составление коммерческих предложений REHAU;
  • Экспорт в файл для загрузки в систему электронных заказов.
  • Составление спецификации по форме ГОСТ;
  • Печать на листах формата A3;
  • Воссоединение нескольких спецификаций в одну;
  • Возможность ручного ввода и корректировки спецификации.

Касательно предварительных работ.

Ввиду того что гидравлический расчет требует много времени и сил, нам необходимо предварительно выполнить некоторые вычисления:

  1. Определить баланс помещений и комнат, которые отапливаются.
  2. Определиться с видом отопительного оборудования и теплообменника. Расставить их по общему плану здания.
  3. До того как приступить к расчету, следует подобрать трубопроводы и определиться с конфигурацией отопительной системы в целом.
  4. Необходимо сделать чертеж системы, желательно аксонометрическую схему. В ней указать длину участков, номера и величину нагрузки.
  5. Циркуляционное кольцо также следует установить заранее.

Важно! Если расчет касается деревянного дома, то никаких отличий между ним и кирпичным, бетонным и т. д

Методы гидравлического расчета

Как мы уже сказали, гидравлический расчет можно сделать на онлайн-калькуляторе, при помощи специальной программы или же в таблице Excel. Первый вариант подойдет даже для тех, кто ничего не понимает в теплотехнике и гидравлике. Естественно, что таким методом можно получить только приблизительные значения, использовать которые в больших и сложных проектах нельзя.

Пример аксонометрической схемы.

Программное обеспечение стоит очень дорого и покупать его на один раз смысла нет, а вот сделать таблицу в Excel можно без вложений. Выполнить расчет, можно используя разные формулы:

  • теоретической гидравлики;
  • СНИПа 2.04.02-84.

Но также может отличаться и метод вычислений: удельных потерь давления или характеристик сопротивления. Последний не может применяться для гравитационных систем с естественной циркуляцией теплоносителя. При монтаже маленьких двухтрубных контуров обогрева с принудительной циркуляцией достаточно придерживаться нескольких простых правил. Основные магистрали делаются из полипропиленовых труб с наружным диаметром 25 мм. Отводы к радиаторам выполняется из труб 20 мм. А о том, как подобрать насос мы писали .

Гидравлический расчет системы отопления

В последнее время автономная отопительная система становится все более востребованной. Большинство владельцев квартир отказываются от централизованного отопления, считая индивидуальную систему более надежной и качественной. При этом довольно часто основной причиной выбора именно автономной системы отопления становится ее доступность и экономичность. Конечно, изначально на приобретение необходимого оборудования и монтаж системы придутся потратиться. Однако все затраты окупаются довольно быстро, поскольку в дальнейшем обслуживание такой системы обходится значительно дешевле, чем ежемесячная оплата централизованного отопления. Конечно, экономичность автономной системы достигается только в том случае, если она была правильно подобрана и установлена. В связи с этим огромное значение приобретает гидравлический расчет системы отопления, который необходимо проводить заранее.

Для чего он нужен?

Прежде всего, следует понимать, что старая программа контроля функционирования отопительной системы значительно отличается от современной именно по причине различного осуществления гидравлического режима. Помимо этого, современные отопительные системы отличаются использованием более качественных материалов и технологий монтажа – что также отображается на их себестоимости и экономичности. Более того, современная система позволяет совершать контроль на всех этапах и замечает даже незначительное колебание температуры.

Можно сделать простой вывод: применение более качественной, модернизированной современной системы позволяет значительно снизить уровень энергопотребления, что, в свою очередь, ведет к повышению экономичности системы. Однако не следует самостоятельно монтировать отопительную систему, поскольку этот процесс требует специальных знаний и навыков. В частности, нередко проблемы возникают из-за неправильно установленного каркаса и отказа от проведения гидравлического расчета системы отопления. Что же важно учитывать при монтаже системы:

  • только в случае правильно выполненного монтажа будет осуществляться равномерная подача теплоносителя ко всем элементам системы. А этот показатель – залог равновесия между регулярно изменяющейся температурой воздуха снаружи и внутри помещения.
  • минимализация затрат на эксплуатацию системы (в особенности – топливной) приводит к тому, что значительно снижается гидравлическое сопротивление системы отопления.
  • чем больше диаметр используемых труб – тем выше будет себестоимость отопительной системы.
  • система должна быть не только надежной и качественно установленной. Важным фактором является и ее бесшумность.

Какую информацию получаем после того, как сделан гидравлический расчет отопления:

  • диаметр труб, применимый на различных участках системы для ее максимально эффективной работы;
  • гидравлическая устойчивость системы отопления в разных сегментах отопительной системы;
  • тип гидравлической связки трубопровода. В некоторых случаях для достижения максимального равновесия отдельных процессов используется специальный каркас.
  • расход и давление теплоносителя во время циркуляции в отопительной системе.

Конечно, расчет гидравлического сопротивления системы отопления является довольно затратным процессом. Однако следует учитывать то, что правильность его проведения дает возможность получения максимально точной информации, необходимой для создания качественной отопительной системы. Поэтому наиболее правильным является привлечение специалиста, а не попытка произвести данный расчет самостоятельно.

Перед тем, как будет проведен гидравлический расчет системы отопления онлайн, следует получить такие данные:

  • равновесие показателей тепла во всех помещениях, которые необходимо будет отапливать;
  • наиболее подходящий тип отопительных приборов, прорисовать на предварительном плане отопительной системы их детальное расположение;
  • определение типа и диаметра используемых для монтажа системы труб;
  • разработка плана запорного и направляющего каркасов. Помимо этого, важно до мелочей продумать расположение в системе всех элементов – от генераторов тепла до вентилей, стабилизаторов давления и датчиков контроля уровня температуры теплоносителя;
  • создание максимально детального плана системы, на котором будут указаны все ее элементы, а также длина и нагрузка сегментов;
  • определить расположение замкнутого контура.

Пример расчета гидравлики отопления

Приведем пример гидравлического расчета системы отопления. Возьмем отдельный участок трубопровода, на котором наблюдается стабильная теплопотеря. Диаметр труб не меняется.

Определить этот участок следует, основываясь на данных о тепловом балансе помещения, в котором он находится. Важно помнить – нумерация участков начинается от источника тепла. Помечаем связующие узлы, присутствующие на подающем участке магистрали прописными буквами.

В случае если на магистрали присутствуют узлы – их следует пометить небольшим штрихом. Используем арабские цифры для определения узловых точек, которые присутствуют в участках ответвления. При горизонтальной отопительной системе каждая из точек соответствует номеру этажа здания. В случае применения вертикальной системы значение точки соответствует значению стояка. Узлы, в которых происходит сбор потока, также следует отмечать штрихами. Следует отметить, что номера непременно должны состоять из двух цифр. Первая из них означает начало участка, ну а вторая, соответственно, – конец.

В случае применения вертикальной системы нумерацию стояков следует проводить арабскими цифрами, следуя при этом по часовой стрелке.

Для определения протяженности всех участков трубопровода следует использовать предварительно составленную детальную план-смету. При ее создании следует придерживаться точности 0,1 м. При этом тепловой поток участка, в котором происходят вычисления, равен тепловой нагрузке, отдаваемой теплоносителем в данном сегменте системы.

Читайте также:  Угловой камин: плюсы и минусы, основные разновидности, места для установки

Использование программ

В процессе моделирования новой постройки, наиболее рациональным является использование специальной программы, которая максимально точно определяет тепловые и гидравлические характеристики будущей отопительной системы. А можно использовать программу excel. При этом программа предоставляет такие данные:

  • необходимый диаметр трубопровода;
  • размер отопительных устройств;
  • тип регулирования вентилей балансировки;
  • уровень настройки регулировочных вентилей;
  • уровень предварительного регулирования термостатических клапанов;
  • настройку датчиков колебания давления в системе.

Конечно же, непосвященному пользователю будет крайне сложно провести самостоятельно расчет и гидравлическое испытание системы отопления. Наиболее правильным вариантом является обращение к специалисту, который имеет достаточный опыт в данной сфере. В случае, когда возможности привлечения профессионала нет, следует внимательно ознакомиться с методической литературой, в которой максимально детально описывается процесс проведения гидравлического расчета.

Гидравлический расчет системы водяного отопления

Самый быстрый и простой способ сделать гидравлический расчет системы отопления – это онлайн калькулятор. Не имея узкопрофильного образования, даже не стоит пытаться выполнить расчет в таблице Excel. Покупать специальную программу за большие деньги, естественно, тоже бессмысленно. Совет таков: если хотите избежать проблем, то сразу обратитесь к хорошему специалисту, которых на самом деле не так уж и много, так что будьте внимательны.

Что такое гидравлический расчет

Гидравлический расчет делают только для крупных контуров обогрева.

Принцип работы водяной системы отопления заключается в том, что по трубам и батареям циркулирует теплоноситель. Это жидкость (вода или антифриз) которая нагревается в котле и потом прогоняется по всему контуру циркуляционным насосом или благодаря силе гравитации.

Теплоноситель во время циркуляции встречает гидравлическое сопротивление. Кроме этого, жидкость немного останавливается из-за трения об стенки труб. Гидравлический расчет систем отопления выполняется для того, чтобы вычислить оптимальное значение сопротивления контура, при котором скорость теплоносителя будет в пределах нормы (2-3 м/с для герметичного контура). По заключению вычислений мы узнаем следующие ключевые параметры:

  • диаметр труб для контура;
  • мощность циркуляционного насоса;
  • количество оборотов для регулировки балансировочных клапанов на каждом радиаторе.

Независимо от того где выполнялся гидравлический расчет системы отопления, на онлайн калькуляторе или в Excel, его пользу сложно переоценить. Так как одним выстрелом мы убиваем двух зайцев: контур работает, как часы и нет перерасхода средств, ведь мы точно будем знать оптимальные параметры элементов системы.

Гидравлический расчет нужно делать только для больших систем отопления, которые обогревают дома с площадью от 200 м. кв. Для маленьких контуров это необязательно.

Специалисты делают гидравлический расчет системы отопления в Excel таблице. Это очень сложный процесс, который под силу далеко не всем людям с профильным образованием, не говоря уже о дилетантах. Нужно разбираться в теплотехнике, гидравлике, знать основы монтажа и многое другое. Получить эти знания можно только в высшем учебном заведении. Есть специализированные программы для гидравлического расчета системы отопления. Но опять же работать с ними могут только люди, имеющие профильное образование.

Зачем нужна аксонометрическая схема

Аксонометрическая схема – это трехмерный чертеж системы отопления. Сделать гидравлический расчет отопления без нее просто нереально. В чертеже указывается:

  • разводка труб;
  • места уменьшения диаметра труб;
  • размещение теплообменников и другого оборудования;
  • места установки трубопроводной арматуры;
  • объем батарей.

Для утепления часто используется Пенофол. Технические характеристики позволяют использовать его даже при высоких температурах, например, в парной.

О том, как правильно утеплить крышу гаража мы писали в этой статье.

От размера батарей зависит их тепловая мощность, которой должно хватить на обогрев каждого помещения. Чтобы подобрать радиаторы нужно знать теплопотери. Чем они больше, тем мощнее нужны теплообменники. Аксонометрия выполняется с соблюдением масштаба.

Методы гидравлического расчета

Как мы уже сказали, гидравлический расчет можно сделать на онлайн-калькуляторе, при помощи специальной программы или же в таблице Excel. Первый вариант подойдет даже для тех, кто ничего не понимает в теплотехнике и гидравлике. Естественно, что таким методом можно получить только приблизительные значения, использовать которые в больших и сложных проектах нельзя.

Пример аксонометрической схемы.

Программное обеспечение стоит очень дорого и покупать его на один раз смысла нет, а вот сделать таблицу в Excel можно без вложений. Выполнить расчет, можно используя разные формулы:

  • теоретической гидравлики;
  • СНИПа 2.04.02-84.

Но также может отличаться и метод вычислений: удельных потерь давления или характеристик сопротивления. Последний не может применяться для гравитационных систем с естественной циркуляцией теплоносителя. При монтаже маленьких двухтрубных контуров обогрева с принудительной циркуляцией достаточно придерживаться нескольких простых правил. Основные магистрали делаются из полипропиленовых труб с наружным диаметром 25 мм. Отводы к радиаторам выполняется из труб 20 мм. А о том, как подобрать насос мы писали здесь.

Пример гидравлического расчета в Excel

Сразу отметим, что ниже будет описан самый простой гидравлический расчет системы отопления. Пример расчета выполнен с использованием формул теоретической гидравлики для прямого трубопровода в горизонтальной плоскости длиною 100 м. Используется труба с наружным диаметром 108 мм, толщина стенки 4 мм.

Гидравлический расчет в Excel.

Для вычислений нам потребуются следующие исходные данные:

  • расход воды;
  • температура подачи и обратки;
  • условный проход трубы;
  • длина контура;
  • шероховатость трубы;
  • общий коэффициент сопротивления.

На примере гидравлического расчета системы отопления нам надо определить три основных критерия – это потери давления на трение (ПДТр), потери давления на местных сопротивлениях (ПДМС) и потери давления в трубопроводе (ПДТп). Все значения должны быть в Паскалях (Па). Ниже представленные формулы будут рассчитываться в кг/см. кв. Чтобы перевести кг/см. кв в Паскали умножаем на 9,18 и на 10 тыс.

Перед утеплением погреба в гараже нужно сделать качественную гидроизоляцию от грунтовых вод.

Если нет возможности утеплиться снаружи, теплоизоляция гаража укладывается изнутри. Далее тут.

Для вычисления ПДТр нам нужно характеристику гидравлического сопротивления умножить на дельту температур теплоносителя. Для расчета ПДМС нужно среднюю плотность воды умножить на ПДТр, коэффициент гидравлического трения и на 1 тыс. Затем полученное значение делим на 2, потом на 9,18 и на 10 тыс. Потери давления в трубопроводе вычисляются суммированием ПДТр и ПДТп.

Итоги

Чтобы сделать гидравлический расчет системы отопления используют программу, онлайн-калькулятор или таблицу Excel. На примере мы показали, что для человека без профильного образования сделать правильные вычисления невозможно. Поэтому лучший вариант – это заказать его у специалиста. Если дом маленьких, то расчет не нужен.

Программа для расчета системы отопления

Для расчёта параметров, необходимых при проектировании системы отопления дома, есть специальные программы, калькуляторы, в т. ч и on-line. Я предпочитаю программу для расчета системы отопления Valtec. В ней есть все нужные инструменты для определения тепловых потерь дома и гидравлических сопротивлений системы.

Прежде чем начинать расчет системы отопления, ознакомимся с возможностями программы Valtec.

Распакуйте скачанный архив с программой. У вас появится папка, в которую нужно зайти и запустить программу, дважды кликнув на значке:

1. Значок программы для расчёта системы отопления.

Сразу откроется рабочее окно программы, т. к. программа не требует установки:

2. Окно программы для расчёта системы отопления.

Итак, что можно сделать в программе Valtec?

Инструменты в Главном меню программы Valtec

У Valtec, как и у любой другой программы, вверху расположено главное меню.

Кликаем на кнопку «Файл» и в открывшемся подменю видим стандартные инструменты, известные любому пользователю компьютера по другим программам:

Дальше: «Инструменты» – «Калькулятор»:

– запускается программа «Калькулятор», встроенная в Windows – для выполнения расчётов:

С помощью «Конвертера» мы будем переводить одни единицы измерения в другие:

Здесь три столбца:

В крайнем левом выбираем ту физическую величину, с которой работаем, например, давление. В среднем столбце – единицу, из которой нужно перевести (например, Паскали – Па), а в правом – в которую нужно перевести (например, в атмосферы технические). В левом верхнем углу калькулятора есть две строки, в верхнюю будем вбивать полученное при расчетах значение, а в нижней будет сразу отображаться перевод в требуемые единицы измерения… Но обо всём этом поговорим в своё время, когда дойдёт до практики.

А пока продолжаем знакомиться с меню «Инструменты». «Генератор бланков»:

Это нужно для проектировщиков, выполняющих проекты на заказ. Если мы делаем отопление только в своём доме, то «Генератор бланков» нам без надобности.

Следующая кнопка в главном меню программы Valtec – «Стили»:

Она для управления внешним видом окна программы – подстраивает под то программное обеспечение, которое установлено на вашем компьютере. По мне так ненужный прибамбас, т. к. я из тех, для кого главное не «шашечки», а доехать. А вы для себя решайте сами.

Дальше в главном меню кнопка «Справки»:

Рассмотрим более подробно инструменты, находящиеся под этой кнопкой.

В «Климатологии» выбираем район строительства:

Потери тепла в доме зависят не только от материалов стен и прочих конструкций, а и от климата местности, где здание находится. Следовательно, и требования к системе отопления зависят от климата.

В левой колонке находим район, в котором живём (республику, область, край, город). Если нашего населённого пункта здесь нет, то выбираем ближайший.

“Материалы”. Здесь перечислены параметры разных строительных материалов, применяемых в конструкциях домов. Именно поэтому при сборе исходных данных (см. предыдущие материалы по проектированию) мы перечисляли материалы стен, полов, потолков:

Инструмент «Проёмы». Здесь сведения по дверным и оконным проёмам:

«Трубы». Здесь собраны сведения о параметрах труб, применяемых в системах отопления: размеры внутренние, наружные, коэффициенты сопротивления, шероховатость внутренних поверхностей:

Это нам понадобится при гидравлических расчётах – для определения мощности циркуляционного насоса.

“Теплоносители”. Собственно, здесь ничего кроме характеристик тех теплоносителей, которые могут быть залиты в систему отопления дома:

Эти характеристики – теплоёмкость, плотность, вязкость.

Не всегда в качестве теплоносителя используют воду, бывает, что в систему заливают антифризы, называемые в простонародии “незамерзайками”. О выборе теплоносителя поговорим в отдельной статье.

“Потребители” для расчета системы отопления не нужны, т. к. этот инструмент для расчётов систем водоснабжения:

«КМС» (коэффициенты местного сопротивления):

Любой отопительный прибор (радиатор, вентиль, термостат и пр.) создаёт сопротивление для движения теплоносителя, и эти сопротивления нужно учесть, чтобы правильно подобрать мощность циркуляционного насоса.

“Приборы по DIN”. Это, как и «Потребители», больше касается систем водоснабжения:

Рабочее окно программы Valtec

Рассмотрим теперь основное окно программы Valtec. Сперва левый столбик:

Выделяем строку «Сведения о проекте» и в правой части окна указываем «Район строительства»:

Если вашего населённого пункта в списках нет, выбираем ближайший.

Далее нужно указать «Тип здания». Т. к. мы делаем расчеты для частного дома, то ставим флажок на «Жилое одноквартирное».

В находящихся ниже строках можно заполнить первые две: «Номер проекта» – 1, «Наименование объекта» – жилой дом. Впрочем, можно не заполнять: это больше нужно для тех, кто проектирует на заказ.

Возвращаемся в левую часть окна программы; вторая сверху строка – «Отопление», в ней есть несколько подпунктов: «Тёплые полы», «Тёплые стены», «Обогрев площадок», “Расчёт теплопотерь”, “Отопительные приборы”. Сейчас нам нужен только «Расчёт теплопотерь». На этом заголовке нужно кликнуть дважды, после чего правая часть окна поменяется:

Тепловые потери рассчитываются в три этапа, поэтому здесь и три вкладки. В первой вкладке – «Расчет теплопотерь. Этап 1» – автоматически будут заполнены строки под заголовком «Расчётные параметры для выбранного района строительства».

Что делать с полем «Режимы», я расскажу и покажу в следующих материалах, в т. ч. на видео, при расчетах теплопотерь конкретного дома.

Ещё в левом столбце окна программы понадобятся пункты «Гидравлика»:

После расчёта теплопотерь нужно будет сделать гидравлический расчет отопительной системы. Выше уже говорилось, что такой расчет нужен для определения мощности циркуляционного насоса. На самом деле это нужно и для подбора мощности котла.

В следующих материалах я покажу, как выполняется расчет в программе Valtec на конкретном примере.

Ссылка на основную публикацию

Гидравлический расчет системы отопления: цель и ход выполнения, вычисления

Гидравлический расчет системы водяного отопления

    Варвара Лупандина 3 лет назад Просмотров:

1 Гидравлический расчет системы водяного отопления

2 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ГИДРАВЛИЧЕСКОГО РАСЧЕТА Гидравлический расчет проводится по законам гидравлики. Расчет основан на следующем принципе: при установившемся движении воды действующая в системе разность давлений (насосного и естественного) полностью расходуется на преодоление сопротивления движению. Правильный гидравлический расчет предопределяет работоспособность системы отопления. На основе гидравлического расчета осуществляется выбор диаметра труб d, мм, обеспечивающий при располагаемом перепаде давления в системе отопления ΔP o, Па, пропуск заданных расходов теплоносителя G, кг/ч. Перед гидравлическим расчетом должна быть выполнена пространственная схема системы отопления в аксонометрической проекции. Задачей гидравлического расчета является выбор экономически целесообразного диаметра труб системы отопления, обеспечивающих при заданном ΔP p пропуск расчетных расходов воды по всем участкам и всем отопительным приборам. Потери давления в общем виде в системе отопления складываются из потерь давления на трение и потерь давления на местные сопротивления.

3 Величина потерь давления на трение на участке трубопровода определяется по уравнению Дарси-Вейсбаха: P mp = (λ /d b ) ((ν 2 ρ)/2), (1) где (ν 2 ρ)/2 динамическое давление; λ коэффициент гидравлического сопротивления, характеризующий потери давления на трение и зависит от характера движения жидкости; d b внутренний диаметр, мм; v скорость движения воды в трубопроводе, м/с; ρ плотность воды, кг/м3. Потери давления на местные сопротивления зависит от вида местного сопротивления и структуры потока, и определяется по уравнению: P mp = ξ (ν 2 ρ)/2, (2) где ξ коэффициент местного сопротивления, (запорно-регулирующая арматура, тройники, отводы, сужения, расширения и т.д.).

4 Kоэффициент местного сопротивления показывает потерю давления, выраженную в долях динамического давления потока. Рассмотрим линейные потери давления в системе отопления ΔP co, Па, уравнение: (3) где l длина трубы, м; или ΔP co = R l + z, где R удельные потери давления на 1 м трубы, Па/м; z потери давления в местных сопротивлениях, Па.

5 Определение располагаемого перепада давления в системе отопления. Располагаемый перепад давления для создания циркуляции воды ΔP p, Па, определяется по формуле: а) в носовой вертикальной однотрубной бифилярной системе с качественным регулированием теплоносителя: – с верхней разводкой: ΔP p = ΔP н + ΔP e.np + ΔP e.mp, – с нижней разводкой магистралей: ΔP p = ΔP н + ΔP e.np,

6 б) в носовой горизонтальной однотрубной и бифилярной вертикальной двухтрубной системах: – с верхней разводкой: ΔP p = ΔP н + 0,4(ΔP e.np + ΔP e.mp ), – с нижней разводкой магистралей: ΔP p = ΔP н + 0,4 ΔP e.np, где ΔP e.np, ΔP e.mp естественное циркуляционное давление, возникающее вследствие охлаждения воды соответственно в отопительных приборов и трубах циркуляционного кольца, Па; ΔP н давление, создаваемое циркуляционным насосом, Па.

7 Сейчас применяют множество методик гидравлического расчета, они трудоемки и чаще всего рассчитывают с помощью ЭВМ: – метод удельных потерь давления на трение; – метод сложения характеристик сопротивления; – метод динамического давления; – метод приведенных длин; – метод перемещения единицы объема воды; – метод эквивалентных сопротивлений. Чаще всего применяют первые две методики расчета. Первая: для расчета однотрубных и двухтрубных систем отопления. Вторая: только для однотрубных систем отопления.

8 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ ОТОПЛЕНИЯ ПО УДЕЛЬНЫМ ПОТЕРЯМ ДАВЛЕНИЯ НА ТРЕНИЕ При расчете по этому способу линейные потери давления от трения R, Па/м, и местные потери давления, Z, Па, в системе отопления ΔP co, Па, находят по формуле: ΔP co = k (R l + z), (4) где l длина трубы, м; k переводной коэффициент (для СИ – k=1,0; для МКГСС – k=1,102); z потери давления в местных сопротивлениях, Па. Рассмотрим последовательность выполнения гидравлического расчета.

9 Рисунок 1. а) Двухтрубная тупиковая система отопления

10 Рисунок 1. б) Двухтрубная система отопления с попутным движением теплоносителя

11 1) На аксонометрической схеме выбирается главное циркуляционное кольцо. В двухтрубных системах водяного отопления (рис.1) оно проходит при тупиковой разводке магистралей через нижний отопительный прибор наиболее нагруженного и удаленного от теплового центра стояка, а при попутном движении воды в магистралях через нижний прибор наиболее нагруженного среднего стояка; Главное циркуляционное кольцо начинается от узла управления по ходу движения теплоносителя. В однотрубных схемах отопления при тупиковом движении теплоносителя это кольцо через наиболее нагруженный и удаленный от теплового пункта стояк, а при попутной схеме через наиболее нагруженный средний стояк. В двухтрубных системах кольцо через нижний отопительный прибор аналогично выбранных стояков.

12 Рисунок 2. Однотрубная система отопления: а тупиковая; б с попутным движение теплоносителя.

13 2) Главное циркуляционное кольцо разбиваем на расчетные участки (Участок отрезок магистрали с постоянным G теплоносителя), где указывается G, кг/ч, длина l, м и d труб, мм; Причем стояки проточные и проточно-регулируемые рассматриваются как один участок. Для стояков регулируемых с замыкающими участками и нетиповых стояков, стояки делятся на отдельные участки, в зависимости от распределения теплоносителя в трубах. 3) Для предварительного выбора диаметра трубопроводов определяют среднее значение удельного падения давления по главному циркуляционному кольцу, Па: где в поправочный коэффициент, учитывающий долю местных потерь давления в системе [Спр. пр. Староверова, ч.i, т. II.21]. 4) Определяем расход теплоносителя на расчетных участках, кг/ч: (5) (6) где Q уч тепловая нагрузка на расчетном участке, Вт.

14 5) Ориентируясь на величину R cp, G и по предельно-допустимым скоростям движения теплоносителя [СНиП прил.14], по Спр. пр. Староверова ч.i т.ii.1 находится предварительный диаметр труб, фактические удельные потери R, и фактическая скорость теплоносителя v. 6) Определяют коэффициент местных сопротивлений [Спр. пр. Староверова, ч.i, т. II.10 II.] ξ, затем по известным значениям v и ξ определяют Z, Па. Местные сопротивления на границах 2х участков, относят к участку с меньшим G теплоносителя. 7) Общие потери давления на участке определяются (Rl + z) и записываются нарастающим итогом в главном циркуляционном кольце (Rl + z). 8) После предварительного выбора диаметра труб главного циркуляционного кольца выполняется гидравлическая увязка (Rl + z) с располагаемым давлением ΔP p, при этом выполняется условиe : где (Rl + z) суммарные потери давления в главном циркуляционном кольце, Па. Запас должен быть 5-10% на неучтенные потери. (7)

15 9) Если указанное условие выполняется, тогда приступают к увязке давлений во второстепенных циркуляционных кольцах через промежуточные стояки с давлением в главном циркуляционном кольце без учета общих участков. Для этого сначала определяют располагаемое давление через второстепенный стояк, который должен равняться (Rl + z) главного циркуляционного кольца с поправкой на разность естественного циркуляционного давления во второстепенном ΔP е.вт и основном ΔP е.осн стояках: – однотрубные: – двухтрубные: ΔP р.ст = (R l + z) осн + (ΔP е.вт ΔP е.осн ), ΔP р.ст = (R l + z) осн, 10) После подбора диаметра труб стояка должно выполняться условие – потери давления в располагаемом стояке должно быть меньше располагаемого давления ΔP р.ст не больше чем на ± % при тупиковой схеме и ± 5 % при попутной схеме движения теплоносителя: (8)

16 где (Rl + z) ст суммарные потери давления на участках рассматриваемого стояка, Па. При невозможности увязки потерь давления предусматривается установка диафрагмы (дроссельной шайбы) диаметром, мм: (9) где G ст расход теплоносителя в стояке, кг/ч; P ш требуемая потеря давления в шайбе, Па. Рисунок 3. Обозначение и расположение диафрагмы (дроссельной шайбы). Дроссельные шайбы меньше 5 мм не устанавливаются. Они устанавливаются у крана на подземной части стояка в месте присоединения к подающей магистрали.

17 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ ОТОПЛЕНИЯ МЕТОДОМ СЛОЖЕНИЯ ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЙ Метод сложения характеристик сопротивления применяют при проектировании насосных вертикальных и горизонтальных однотрубных систем, а также вертикальных двухтрубных систем с кранами повышенного сопротивления. Гидравлический расчет может производиться для постоянного или переменного перепада температуры в стояках с учетом заданной проводимости труб.

18 Рисунок 4. Однотрубная система отопления: тупиковая.

19 Рисунок 5. Однотрубная система отопления: с попутным движением теплоносителя.

20 При гидравлическом расчете по указанной методике потери давления на каждом расчетном участке от трения ΔP уч, Па, в местных сопротивлениях определяют по формуле: (10) где G уч расход воды на участке, кг/ч; характеристика сопротивления участка, Па/(кг/ч)2, вычисляем по S уч формуле: где A уч удельное динамическое давление в трубе на участке при внутреннем диаметре d b и расходе 1 кг/ч, выбираемое по [5, табл. 10.7]; λ/d b приведенный коэффициент гидравлического трения, м 1, принимаемый по [5, табл. 10.7] ; l уч длина участка, м; ξ уч сумма коэффициентов местных сопротивлений на участке. (11)

21 Рекомендуемые значения для стандартных диаметров труб Диаметр условного прохода, мм Расход воды G, при скорости V = 1 м/с A g 10 4, Па/(кг/ч)2 λ/d b, м 1 S уд 10 4, Па/м(кг/ч)2 ГОСТ * ,50 3,60 95, ,60 2,70 28, ,19 1,80 5, ,23 1,40 1, ,39 1,00 0, ,23 0,80 0, ,082 0,55 0,045 ГОСТ * ,113 0,60 0, ,0269 0,40 0, ,0142 0,30 0, , ,23 0, , ,18 0, , , 0,000

22 Рассмотрим последовательность выполнения гидравлического расчета при равном перепаде температуры теплоносителя в стояках. 1) Перед выполнением гидравлического расчета конструируется однотрубная система водяного отопления из унифицированных узлов и на построенной схеме выбирается главное циркуляционное кольцо которое делится на расчетные участки с указанием расхода теплоносителя на участке G уч, кг/ч, длины участка l уч, м, диаметра d уч, мм; 2) Выбирается располагаемый перепад давления ΔP p, Па, в однотрубной системе отопления: ΔP p = ΔP н + ΔP e.np. 3) При предварительном выборе диаметра трубы для каждого участка вычисляется удельная характеристика сопротивления S уд, Па/(кг/ч)2м: (12) где G уч ориентировочный расход воды на участке, кг/ч, определяемый по формуле:

23 (13) где R cp среднее значение удельной потери давления от трения в расчетном кольце, определяемое по формуле: (14) 4) Выполнение гидравлического расчета начинается с самого удаленного и нагруженного стояка в тупиковой системе и с самого нагруженного стояка в системе водяного отопления с попутным движением теплоносителя. Диаметры труб стояка назначают, сопоставляя полученное по формуле (12) S уд со значением S уд для стандартных диаметров труб. Для обеспечения тепловой устойчивости системы отопления принимается для стояков меньший ближайший диаметр, с последующей проверкой скорости движения воды в трубопроводах стояка. Возможна конструкция стояков из труб двух различных смежных диаметров. Принятый диаметр труб двух различных смежных диаметров.

24 5) По выбранному диаметру стояка назначаются диаметры подводки и замыкающего участка узла отопительного прибора. Рекомендуемые диаметры трубопроводов узла нагревательного прибора Диаметр труб dу, мм Наименование узла Эскиз узла замыкающего стояка стояка подводки участка Этажестояк с осевым обходным участком и трехходовым краном Этажестояк со смещенным обходным участком / Этажестояк с осевым замыкающим участком и краном типа КРП

25 Этажестояк со смещенным замыкающим участком и краном типа КРП Этажестояк проточный Узел верхнего этажа при нижней разводке и трехходовом кране То же Узел верхнего этажа при нижней разводке и кране типа КРП То же / /

26 6) После выбора диаметра труб и типа отопительного прибора определяется характеристика сопротивления стояка по формуле: S cm = S m.y + S n.y, () где S n.y характеристика сопротивления приборных узлов стояка однотрубной системы отопления определяемая по формуле: S n.y = S n + S np l, (16) где S m.y характеристика сопротивления трубных узлов стояка однотрубной системы отопления, Па/(кг/ч)2; характеристика сопротивления отопительного прибора длиной 1 м, S np Па/(кг/ч)2; характеристика сопротивления подводок к отопительному прибору, S n Па/(кг/ч)2; l длина прибора, м. 7) По характеристике сопротивления стояка S cm и расходу теплоносителя в стояке G cm, вычисляют потери давления в стояке, Па, по формуле: ΔP cm = S cm G 2 cm, (17)

27 8) Затем производится гидравлический расчет магистральных участков главного циркуляционного кольца. Предварительный выбор диаметра производится путем сопоставления значения S уд, полученного по формуле (12) со значением S уд для стандартных диаметров труб. С целью повышения тепловой устойчивости системы отопления для магистралей принимается ближайший больший диаметр труб. 9) Затем проверяется скорость движения воды при выборе диаметра труб. Например, расход воды в трубе d у = мм составляет 560 кг/ч, тогда скорость движения воды V = 560 : 690 = 0,79м/с.

28 Рекомендуемые диаметры трубопроводов узла нагревательного прибора Скорость движения теплоносителя, м/с, при большем из Допустимый уровень звука Z A, дб(а) коэффициентов местного сопротивления арматуры на трубах, примыкающих к помещению При коэффициентах местного сопротивления До ,5/- 1,1/0,7 0,9/0,55 0,75/0,5 0,6/0,4 30 1,5/- 1,5/1,2 1,2/1,0 1,05 0,85/0, ,5/- 1,5/1,5 1,5/1,1 0,8 1,0/0,8 40 1,5/- 1,5/1,5 1,5/1,5 1,2/0,95 1,3/1,2 45 и более 1,5/- 1,5/1,5 1,5/1,5 1,5/1,5 1,5/1,4 Примечание. В числителе даны значения скоростей воды при всех видах арматуры, кроме прямых вентилей; в знаменателе – при прямых вентилях. 10) В соответствии с предварительно выбранным диаметром труб на магистральных участках принимаются значения A g и λ/d у на 1 м трубы. 11) Определяются на расчетных участках магистральных труб сопротивление от трения l уч (λ/d у ) и значения коэффициентов местных сопротивлений S уч.

29 12) Далее определяются значения S уч по формуле (2), и G уч по формуле (13). После вычисления этих значений по формуле (10) рассчитываются потери давления на участках магистральных труб главного циркуляционного кольца. 13) Суммарные потери давления на участках магистральных труб главного (второстепенного) циркуляционного кольца определяются по формуле, Па: ΔP м = S уч(1) G 2 уч(1)+ S уч(2) G 2 уч(2) S уч(n) G 2 уч(n), где S уч(n) значения характеристик сопротивления участков магистральных труб главного (второстепенного) циркуляционного кольца, Па/(кг/ч)2; G уч(n) расход воды на участках магистральных труб главного (второстепенного) циркуляционного кольца, кг/ч. 14) Определяются общие потери давления. Па, по значениям S cm и S уч, G cm и G уч на каждом расчетном участке, дальнем тупиковом стояке и главном циркуляционном кольце: ΔP c.o = ΔP cm ΔP ì,

30 ) После предварительного выбора диаметров труб стояка и на участках магистралей главного циркуляционного кольца выполняется гидравлическая увязка при этом должно выполняться условие: 0,9ΔP р ΔP c.o, Величина невязки А, %, в расходуемых давлениях определяется по уравнению: 16) При обеспечении запаса располагаемого перепада давления 5-10 % приступаем к увязке расходуемых давлений в циркуляционных кольцах через промежуточные стояки главного 17) Рассчитываем располагаемое циркуляционное давление для предпоследнего стояка, которое складывается из потерь давления в последнем стояке и на двух параллельных участках магистралей до рассчитываемого стояка. При этом различием в значениях естественного циркуляционного давления в однотипных стояках можно пренебречь. Исходя из располагаемого давления по характеристикам сопротивления выполняют гидравлический расчет предпоследнего стояка (см. выше п.п. 4, 5, 6, 7).

Читайте также:  Плоские радиаторы отопления: виды, плюсы и минусы, установка, выбор

31 Расчетная невязка между располагаемым давлением и потерями давления в предпоследнем стояке не должны отличаться более чем на ± % при тупиковой схеме и ±5 % при попутной схеме движения теплоносителя. 18) Сумма потерь давления в одном из двух рассчитанных стояков и на двух (четырех) параллельных участках магистралей принимается за располагаемое циркуляционное давление для третьего от конца системы стояка. Порядок гидравлического расчета третьего стояка выполняется аналогично (см. выше п.п. 4, 5, 6, 7, 16). Таким образом, производится гидравлический расчет остальных стояков. При невязках потерь давления в увязываемых кольцах предусматривается установка на стояках дроссельных шайб.

Как сделать гидравлический расчет системы отопления

Нужно отметить, что инженерные расчеты систем водоснабжения и отопления никак нельзя назвать простыми, но без них обойтись невозможно, только очень опытный специалист-практик может нарисовать систему отопления «на глазок» и безошибочно подобрать диаметры труб. Это если схема достаточно проста и предназначена для обогрева небольшого дома высотой 1 или 2 этажа. А когда речь идет о сложных двухтрубных системах, то рассчитывать их все равно придется. Эта статья для тех, кто решился самостоятельно выполнить расчет системы отопления частного дома. Мы изложим методику несколько упрощенно, но так, чтобы получить максимально точные результаты.

Цель и ход выполнения расчета

Конечно, за результатами можно обратиться к специалистам либо воспользоваться онлайн-калькулятором, коих хватает на всяких интернет-ресурсах. Но первое стоит денег, а второе может дать некорректный результат и его все равно надо проверять.

Так что лучше набраться терпения и взяться за дело самому. Надо понимать, что практическая цель гидравлического расчета – это подбор проходных сечений труб и определение перепада давления во всей системе, чтобы верно выбрать циркуляционный насос.

Примечание. Давая рекомендации по выполнению вычислений подразумевается, что теплотехнические расчеты уже сделаны, и радиаторы подобраны по мощности. Если же нет, то придется идти старым путем: принимать тепловую мощность каждого радиатора по квадратуре помещения, но тогда точность расчета снизится.

Общая схема расчета выглядит таким образом:

  • подготовка аксонометрической схемы: когда уже выполнен расчет отопительных приборов, то известна их мощность, ее надо нанести на чертеж возле каждого радиатора;
  • определение расхода теплоносителя и диаметров трубопроводов;
  • расчет сопротивления системы и подбор циркуляционного насоса;
  • расчет объема воды в системе и вместительности расширительного бака.

Любой гидравлический расчет системы отопления начинается со схемы, нарисованной в 3 измерениях для наглядности (аксонометрия). На нее наносятся все известные данные, в качестве примера возьмем участок системы, изображенный на чертеже:

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: http://dwg.ru/dnl/11875

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Примечание. Двух – и однотрубная система отопления рассчитываются одинаково, по длине трубы во всех ветвях, а в первом случае — прямой и обратной магистрали.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Расчет расширительного бака

Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.

Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.

Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину. Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть. То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.

Заключение

Многие, прочитав данную статью, могут отказаться от намерения считать гидравлику самостоятельно ввиду явной сложности процесса. Рекомендация для них – обратиться к специалисту-практику. Те же, кто проявил желание и уже сделал расчет тепловой мощности отопления на здание, наверняка справятся и с этой задачей. Но готовую схему с результатами все равно стоит показать опытному монтажнику для проверки.

Сначала рассчитай, а потоп собирай. Гидравлический расчет системы отопления.

Даже самое новое и инновационное тепловое оборудование, установленное в доме, может оказаться бесполезным, поскольку не способно работать слаженно в едином отопительном комплексе. Связывающим звеном многочисленных узлов и элементов тепловой системы является теплоноситель и его оптимальный гидравлический режим. Если собственник жилого дома решил создать экономичную и работоспособную систему теплоснабжения, ему понадобится знать, как выполнить гидравлический расчет системы отопления.

Этапы проектирования отопительных систем

Гидравлический вместе с тепловым расчетом считаются одними из базовых в процессе создания работоспособной внутридомовой системы теплоснабжения. Главная задача гидравлического расчета — обеспечить соответствие расчётных расходов с ее реальными рабочими показателями. Объем теплоносителя, циркулирующего в сети должен сформировать устойчивый тепловой баланс, обеспечивающий необходимую санитарную температуру внутри здания.

Гидравлический расчет системы отопления состоит из системы вычислений, способных установить важные характеристики тепловой сети:

  • Минимально допустимые внутренние диаметры труб и объем теплоносителя, который способен пропустить выбранный сортамент и типоразмер трубопроводов;
  • все гидравлические потери на рассчитываемых участках;
  • условия гидромеханической наладки;
  • общие потери напора воды;
  • оптимизированный объем воды.

В соответствии с полученными расчетными данными, выполняют подбор электронасосов и типоразмеры прямых и обратных труб.

Гидравлический расчет системы отопления: цели и задачи

Практическая цель такого расчета — это выбор внутренних Д вн труб и установление перепада напора в сети, для профессионального подбора электронасоса, способного обеспечить надежную циркуляцию теплоносителя.

Диаметр труб обязан обеспечить радиатор таким объемом греющей воды, которое требуется ему для функционирования с рабочей производительностью. Одновременно с этим принимается скорость циркуляции теплоносителя, она должна находится в промежутке от 0.2 до 0.5 л/с, а разница температур воды на входе/выходе из прибора отопления — 15-20 С.

Чем дальше размещена батарея от котла, тем большую дистанцию обязана пройти жидкость и, следовательно, тем более значимое гидросопротивление станет мешать ее продвижению. Для выполнения корректировки скорости течения воды необходимо использовать трубы разного диаметра.

Технология выполнения гидравлического расчета системы отопления

Перед тем как начинать выполнять гидравлический расчет системы отопления делают тепловой расчет объекта отопления с установлением теплового баланса и мощности основного оборудования: котла и приборов отопления. Если этих данных нет, то пользуются приблизительным методом определения по размеру отапливаемой площади исходя из соотношения: 1 кВт на 10 м2. Данная формула хорошо работает для объектов расположенных в центральных районах России, для северных и южных регионов вводятся соответствующие повышающие/понижающие коэффициенты.

Далее приступают непосредственно к выполнению гидравлического расчета.

Стандартная схема расчета:

  • Выполняют аксонометрическую схему;
  • наносят на чертеж около каждого прибора его тепловую мощность, кВт;
  • определяют объемные расходы греющей воды и внутренние Д труб;
  • рассчитывают общее сопротивления сети;
  • выполняют выбор электронасоса;
  • рассчитывают расширительный бак.

Гидравлический расчет однотрубной и двухтрубной системы

Для установления потерь потока в сети, ее разделяют на ответвления. Одно ответвление — это расстояние от источника нагрева до каждого прибора отопления. Они в свою очередь подразделяют на расчетные участки — части труб с равным объемным расходом сетевой воды. Для любого такого участка устанавливают температуру теплоносителя, разницу температур, общий тепловой поток — сумму мощностей всех установленных батарей на данном отрезке сети. В обязательном порядке учитывают местные сопротивления в виде запорной арматуры, фитингов, тройников и других элементов по схеме.

Для однотрубной/двухтрубных систем теплоснабжения с простой геометрией контура, не имеющей большого количества нагревательных приборов, расчеты можно провести ручным способом с применением калькулятора. Для более сложных развитых схем тепловой сети – с помощью программных методов.

Объемный расход греющей воды устанавливают по формуле:

  • Мт — общая мощность тепловой сети, определенная при теплотехническом расчете или по проекту, кВт;
  • Ср — физическая величина теплоемкости воды, кДж/(кг х C);
  • ΔТ – перепад температур на входе/выходе горячей воды из котлоагрегата, C.

Скорость жидкой среды, циркулирующей по трубам:

  • Рт — расчетный расход воды на расчетном участке, кг/с;
  • ρ – плотность жидкой среды, кг/ м3;
  • Пс — площадь сечения трубопровода, м2
Читайте также:  Утепление балкона: пошаговая инструкция теплоизоляции, варианты как сделать самому

Гидравлические потери в трубопроводе определяются:

  • R – справочные данные удельных потерь в трубах на трение, Па/м;
  • Дт — длина трубопровода, м.

ΔPм.с = Σξ х (V²/2) х ρ

  • Σξ – сумма потерь;
  • V – скорость воды м/сек.

Системы с естественной циркуляцией

При выполнении гидравлического расчета пользуются исключительно внутренними Д труб и соответствующим им условному проходу — Ду. Для таких систем применяют следующие рекомендации:

  • Протяженность горизонтальных линий труб не могут быть больше 20 м.
  • Магистральный трубопровод от источника нагрева принимают не менее Ду 50 мл.
  • Аналогичный диаметр трубопроводов принимают на отдельные 35 секций алюминиевых радиаторов.
  • Для ответвлений с количеством радиаторов от 25-35 шт., Ду = 40 мм.
  • А также для ответвлений с количеством радиаторов 10-25 шт., Ду = 25 мм.
  • И для ответвлений с количеством радиаторов до 10шт., Ду = 20 мм.

На любые 10 м ровного участка без размещенных батарей к Ду нужно прибавить еще 1/2 дюйма для уменьшения скорости циркуляции воды и потерь напора по длине.

Системы с принудительной циркуляцией

В схемах с принудительным движением среды, обеспечиваемого электронасосом Д труб непосредственно связан со скоростью циркуляции воды, состоянием внутренней шероховатости труб или материала из которого они изготовлены. Полимерные трубы или выполненные из меди, обладают наименьшим показателем и чем стальные.

С целью профилактики увеличения шума от работающей отопительной системы, скорости циркуляции воды ограничивают, соответственно для Ду от 10 до 20 мм, соответственно от 1.5 м/с до 1.0 м/с.

Расчет по отапливаемой площади

Наиболее точный гидравлический расчет системы отопления основывается на размерах нагреваемой площади объекта. Кроме того при этом учитывают площадь оконных и внешних дверных проемов, степень утепления здания и кровли, а также климатические район размещения здания.

С помощью такого расчета не только правильно подбирают Ду и протяженность трубопроводов, но устанавливают балансировку системы с применением радиаторных клапанов.

Имея суммарную мощность всех батарей, определяют по вышеперечисленной формуле:

Например, для дома 150 м2, минимальная мощность тепловой сети – 15 кВт, тогда расход теплоносителя составит 0.239 л/сек или 14,34 л/мин.

С тем чтобы обеспечить вышеуказанные условия, потребуется грамотно выбрать диаметры труб. Это можно сделать по следующей таблице.

В ней указана суммарная мощность радиаторов, которые трубопровод может обеспечить теплом.

Для объектов с отапливаемой площадью до 200 м2 с принудительным контуром циркуляции и установленными радиаторными термоклапанами, возможно не выполнять полный гидрорасчет, а подобрать Д труб по таблице ниже.

Расчет расширительного бака

Для того чтобы рассчитать рабочий объем расширительного бака, нужно установить общий объем отопительной системы.

Объем емкости бака вычисляют по формуле

Орб = (О сис x Е) / Д,

  • О сис — общий внутренний объём сети;
  • Е – коэффициент расширения водной среды;
  • Д – эффективность бачка.

Объем системы теплоснабжения весьма трудно определяется. Поэтому для приблизительных расчетов его можно взять из соотношения 1.0 кВт – 15.0 литров

К примеру, нагрузка на отопление дома составляет 40 кВт, тогда Осис = 15 х 40 = 600 л. Для упрощения расчета можно воспользоваться онлайн расчетом. Для данных условий расчет онлайн показал, что минимальный объем бака должен быть 91 литр.

Возможные модификации баков, подходящие для полученных расчетов:

  • Wester Heating 100, 5508 руб.;
  • WRV 100, 6100 руб.;
  • STOUT 100, 5084 руб.

Предварительная балансировка системы

Профессионально выполненный гидравлический расчет устанавливает, в каких контурах движения теплоносителя его расход будет большим. Это имеет существенное значение, поскольку в неуравновешенной системе нагрев дома по помещениям будет неравномерный. Если расчеты показали, что потери напора в контурах циркуляции очень сильно различаются, то ее регулируют дополнительной установкой клапанов.

Если гидравлическая балансировка в сети не произведена, то тепло преимущественно расходуется на первой к котлу батареи, а самые крайние останутся холодными.

Первый метод балансировки довольно точный, требует наличие проекта и гидравлического расчета тепловой сети с обозначением расходов теплоносителя на каждом ответвлении труб. Без этого точная наладка сети неосуществима. Второй метод осуществляется с использованием регулировочной арматуры, встроенной на каждом участке либо стояке. И третий выполняется с применением специально предназначенного электронного прибора, присоединяемого к контрольной арматуре.

Обзор программ для гидравлических вычислений

Прежде всего, с целью упрощения гидравлического расчета внутридомовых систем теплоснабжения лучше обратиться к узкоспециализированным программам. Но их не очень много, хотя выбрать всё же есть из чего. Некоторые из них бесплатные, а иные – в демо вариантах.

Наиболее популярные программы для расчета гидравлики отопительной сети:

  1. «Oventrop CO» – ПО вполне справится с расчетами для загородного домовладения для однотрубной/двухтрубной системы. У нее широкий потенциал: от выбора Ду труб до выполнения анализов расхода теплоносителя. Все итоги можно перевести в Виндовс, работает программа бесплатно.
  2. «Instal-Therm HCR» способна рассчитать схему радиаторного и наружного теплоснабжения. В нее включены еще 3 ПО: San для любой воды, Heat&Energy – для определения потерь тепла и Scan – для анализа схем отопления. Распространяется бесплатно в виде пробной версии.
  3. «HERZ C.O.» – бесплатное ПО для гидравлического расчёта одно и двухтрубной схемы теплоснабжения, как для новых, так и для отремонтированных помещениях, с водяным и гликолиевым теплоносителем. Программа обладает свидетельство качества ООО ЦСПС.

Фотографии по тексту для наглядности о сказанном

Потери напора жидкости на внезапном сужении

Потери напора при внезапном расширении труб

Расчет гидросопротивления в тепловой сети

Схема гидравлического расчета участка сети

Формулы расчета Д труб отопления

Выбор расширительного бака

Таким образом, можно подвести итог, что гидравлический расчет тепловых сетей очень важный и ответственный этап проектирования систем теплоснабжения любого объекта от небольшого дачного домика до жилого квартала с десятками тысяч квадратных метров. Прежде всего, такой расчет помогает правильно выбрать все необходимое оборудование и запорно-регулировочную арматуру, чтобы обеспечить оптимальные характеристики работы тепловой сети.

Гидравлический расчёт системы отопления

Сегодня разберём, как произвести гидравлический расчёт системы отопления. Ведь по сей день распространяется практика проектирования отопительных систем по наитию. Это в корне неверный подход: без предварительного расчёта мы задираем планку материалоёмкости, провоцируем нештатные режимы работы и лишаемся возможности добиться максимальной эффективности.

Цели и задачи гидравлического расчёта

С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.

Практические цели гидравлического расчёта таковы:

  1. Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.
  2. Определить, какое влияние оказывает изменение режима работы каждого из устройств на весь комплекс в целом.
  3. Установить, какая производительность и рабочие характеристики отдельных узлов и устройств будут достаточными для выполнения отопительной системой своих функций без значительного удорожания и обеспечения необоснованно высокого запаса надёжности.
  4. В конечном итоге — обеспечить строго дозированное распределение тепловой энергии по различным зонам отопления и гарантировать, что это распределение будет сохраняться с высоким постоянством.

Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

Двухтрубная тупиковая система отопления

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.

Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.

Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.

Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Определение расхода и скорости движения теплоносителя

Наиболее известная методика расчёта гидравлических систем основывается на данных теплотехнического расчёта, которым определяется норма восполнения теплопотерь в каждом помещении и, соответственно, тепловая мощность радиаторов, в них установленных. На первый взгляд всё просто: мы имеем общее значение тепловой мощности и затем дозируем поступление теплоносителя к каждому нагревательному прибору. Для большего удобства предварительно строится аксонометрический эскиз гидравлической системы, который аннотируется требуемыми показателями мощности радиаторов или петель водяного тёплого пола.

Аксонометрическая схема системы отопления

Переход от теплотехнического расчёта к гидравлическому осуществляется путём введения понятия массового потока, то есть некой массы теплоносителя, подводимого к каждому участку отопительного контура. Массовый поток есть отношение требуемой тепловой мощности к произведению удельной теплоёмкости теплоносителя на разность температур в подающем и возвратном трубопроводе. Таким образом, на эскизе отопительной системы отмечают ключевые точки, для которых указывается номинальный массовый поток. Для удобства параллельно определяется и объёмный поток с учётом плотности используемого теплоносителя.

  • G — расход теплоносителя, кг/с
  • Q — необходимая тепловая мощность, Вт
  • c — удельная теплоёмкость теплоносителя, для воды принимаемая 4200 Дж/(кг·°С)
  • ΔT = (t2 – t1) — разность температур между подачей и обраткой, °С

Логика здесь проста: чтобы доставить необходимое количество тепла к радиатору, нужно сперва определить объём или массу теплоносителя с заданной теплоёмкостью, проходящего через трубопровод за единицу времени. Для этого требуется определить скорость движения теплоносителя в контуре, которая равна отношению объёмного потока к площади сечения внутреннего прохода трубы. Если расчёт скорости ведётся относительно массового потока, в знаменатель нужно добавить значение плотности теплоносителя:

V = G / (ρ · f)

  • V — скорость движения теплоносителя, м/с
  • G — расход теплоносителя, кг/с
  • ρ — плотность теплоносителя, для воды можно принять 1000 кг/м 3
  • f — площадь сечения трубы, находится по формуле π­·r 2 , где r — внутренний диаметр трубы, делённый на два

Данные о расходе и скорости необходимы для определения условного прохода труб развязки, а также подачи и напора циркуляционных насосов. Устройства принудительной циркуляции должны создавать избыточное давление, позволяющее преодолеть гидродинамическое сопротивление труб и запорно-регулирующей арматуры. Наибольшую сложность представляет гидравлический расчёт систем с естественной (гравитационной) циркуляцией, для которых требуемое избыточное давление рассчитывается по скорости и степени объёмного расширения нагреваемого теплоносителя.

Потери напора и давления

Расчёт параметров по описанным выше соотношениям был бы достаточен для идеальных моделей. В реальной жизни и объёмный поток, и скорость теплоносителя всегда будут отличаться от расчётных в разных точках системы. Причина тому — гидродинамическое сопротивление движению теплоносителя. Оно обусловлено рядом факторов:

  1. Силами трения теплоносителя о стенки труб.
  2. Местными сопротивлениями протоку, образуемыми фитингами, кранами, фильтрами, термостатирующими клапанами и прочей арматурой.
  3. Наличием разветвлений присоединительного и ответвительного типов.
  4. Турбулентными завихрениями на поворотах, сужениях, расширениях и т. д.

Задача нахождения падения давления и скорости на разных участках системы по праву считается наиболее сложной, она лежит в области расчётов гидродинамических сред. Так, силы трения жидкости о внутренние поверхности трубы описываются логарифмической функцией, учитывающей шероховатость материала и кинематическую вязкость. С расчётами турбулентных завихрений всё ещё сложнее: малейшее изменение профиля и формы канала делает каждую отдельно взятую ситуацию уникальной. Для облегчения расчётов вводится два опорных коэффициента:

  1. Кvs — характеризующий пропускную способность труб, радиаторов, разделителей и прочих участков, приближенных к линейным.
  2. Кмс — определяющий местные сопротивления в различной арматуре.

Эти коэффициенты указываются производителями труб, клапанов, кранов, фильтров для каждого отдельно взятого изделия. Пользоваться коэффициентами достаточно легко: для определения потери напора Кмс умножают на отношение квадрата скорости движения теплоносителя к двойному значению ускорения свободного падения:

Δhмс = Кмс (V 2 /2g) или Δpмс = Кмс (ρV 2 /2)

  • Δhмс — потери напора на местных сопротивлениях, м
  • Δpмс — потери напора на местных сопротивлениях, Па
  • Кмс — коэффициент местного сопротивления
  • g — ускорение свободного падения, 9,8 м/с 2
  • ρ — плотность теплоносителя, для воды 1000 кг/м 3
Читайте также:  Пенополистирол под ламинат: разновидности и их характеристики, подложки

Потеря напора на линейных участках представляет собой отношение пропускной способности канала к известному коэффициенту пропускной способности, причём результат деления нужно возвести во вторую степень:

Р = (G/Kvs) 2

  • Р — потеря напора, бар
  • G — фактический расход теплоносителя, м 3 /час
  • Kvs — пропускная способность, м 3 /час

Предварительная балансировка системы

Важнейшей финальной целью гидравлического расчёта системы отопления является вычисление таких значений пропускной способности, при которых в каждую часть каждого контура отопления поступает строго дозированное количество теплоносителя с определённой температурой, чем обеспечивается нормированное выделение тепла на нагревательных приборах. Эта задача лишь на первый взгляд кажется сложной. В действительности балансировка выполняется за счёт регулировочных клапанов, ограничивающих проток. Для каждой модели клапана указывается как коэффициент Kvs для полностью открытого состояния, так и график изменения коэффициента Kv для разной степени открытия регулировочного штока. Изменяя пропускную способность клапанов, которые, как правило, устанавливаются в точках подключения нагревательных приборов, можно добиться искомого распределения теплоносителя, а значит, и количества переносимой им теплоты.

Есть, однако, небольшой нюанс: при изменении пропускной способности в одной точке системы меняется не только фактический расход на рассматриваемом участке. Из-за снижения или увеличения протока в некой степени меняется баланс во всех остальных контурах. Если взять для примера два радиатора с разной тепловой мощностью, соединённых параллельно при встречном движении теплоносителя, то при увеличении пропускной способности прибора, стоящего в цепи первым, второй получит меньше теплоносителя из-за увеличения разницы в гидродинамическом сопротивлении. Напротив, при снижении протока за счёт регулировочного клапана все остальные радиаторы, стоящие по цепочке дальше, получат больший объём теплоносителя автоматически и будут нуждаться в дополнительной калибровке. Для каждого типа разводки действуют свои принципы балансировки.

Программные комплексы для расчётов

Очевидно, что выполнение расчётов вручную оправдано только для малых систем отопления, имеющих максимум один или два контура с 4–5 радиаторами в каждом. Более сложные системы отопления тепловой мощностью свыше 30 кВт требуют комплексного подхода при расчёте гидравлики, что расширяет спектр используемых инструментов далеко за пределы карандаша и листа бумаги.

Danfoss C.O. 3.8

На сегодняшний день существует достаточно большое количество программного обеспечения, предоставляемого крупнейшими производителями отопительной техники, такими как Valtec, Danfoss или Herz. В подобных программных комплексах для расчёта поведения гидравлики используется та же методология, которая была описана в нашем обзоре. Сначала в визуальном редакторе моделируется точная копия проектируемой системы отопления, для которой указываются данные о тепловой мощности, типе теплоносителя, протяжённости и высоте перепадов трубопроводов, используемой арматуре, радиаторах и змеевиках тёплого пола. В библиотеке программы имеется широкий спектр гидротехнических устройств и арматуры, для каждого изделия производитель заблаговременно определил рабочие параметры и базовые коэффициенты. При желании можно добавить и сторонние образцы устройств, если для них известен требуемый перечень характеристик.

В финале работы программа даёт возможность определить подходящий условный проход труб, подобрать достаточную подачу и напор циркуляционных насосов. Расчёт завершается балансировкой системы, при этом в ходе симуляции работы гидравлики происходит учёт зависимостей и влияния изменения пропускной способности одного узла системы на все остальные. Практика показывает, что освоение и использование даже платных программных продуктов оказывается дешевле, чем если бы выполнение расчётов поручалось подрядным специалистам.

Гидравлический расчет системы отопления.

Выполнить гидравлический расчет системы отопления – это значит так подобрать диаметры отдельных участков сети (с учетом располагаемого циркуляционного давления), чтобы по ним проходил расчетный расход теплоносителя. Расчет ведется подбором диаметра по имеющемуся сортаменту труб.

Для зданий малой этажности наиболее часто применяется двухтрубная система отопления, для повышенной этажности – однотрубная. Для расчета такой системы должны быть следующие исходные данные:

1. Общий для системы перепад температуры теплоносителя (т.е. разность температуры воды в подающей и обратной магистралях).

2. Количество теплоты, которое необходимо подать в каждое помещение для обеспечения требуемых параметров воздуха.

3. Аксонометрическая схема системы отопления с нанесенными на нее нагревательными приборами и регулирующей арматурой.

Последовательность выполнения гидравлического расчета

1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.

Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.

В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.

2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:

а) заданный расход воды;

б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.

Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.

3. Определяется расчетное циркуляционное давление по формуле

, (5.1)

где – давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное

, (5.2)

где – сумма длин участков главного циркуляционного кольца;

– естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как

, (5.3)

где – расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.

Значение коэффициента можно определить из табл.5.1.

Таблица 5.1 – Значение в зависимости от расчетной температуры воды в системе отопления

(), 0 C

, кг/(м 3 К)

Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия

Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.

Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.

Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.

Расчет гидравлики водяной системы отопления

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.

Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.

Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.

Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.

На данном этапе проектирования определяются:

  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участкаДлина участка в метрахКоличество приборов а участке, шт.
1-21,81
2-33,01
3-42,82
4-52,92

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.

Вычисление местных сопротивлений

Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:

  • шероховатость внутренней поверхности трубы;
  • наличие мест расширения или сужения внутреннего диаметра трубопровода;
  • повороты;
  • протяженность;
  • наличие тройников, шаровых кранов, приборов балансировки и их количество.

Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).

Исходные данные для расчета:

  • длина расчетного участка – l, м;
  • диаметр трубы – d, мм;
  • заданная скорость теплоносителя – u, мм;
  • характеристики регулирующей арматуры, предоставляемые производителем;
  • коэффициент трения (зависит от материала трубы), λ;
  • потери на трение – ∆Pl, Па;
  • плотность теплоносителя (расчетная) – ρ = 971,8 кг/м 3 ;
  • толщина стенки трубы – dн х δ, мм;
  • эквивалентная шероховатость трубы – kэ, мм.

Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.

Символ ξ в формуле означает коэффициент местного сопротивления.

Если в доме стоит печка, отопить она сможет лишь небольшое помещение. Установка батарей отопления в частном доме большой площади обязательна, так как в противном случае отдаленные от печи комнаты отапливаться не будут.

Основные характеристики газового котла Buderus представлены в этом обзоре.

О том, как запустить газовый котел, расскажем в этой статье.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение потерь

Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:

  • первичного контура – ∆Plk;
  • местных систем – ∆Plм;
  • генератора тепла – ∆Pтг;
  • теплообменника ∆Pто.

Гидравлический расчет системы отопления – пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 75 0 С, tо = 60 0 С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м 3 /ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 80 0 С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

Варианты двухтрубной отопительной системы

Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

Самодельная печь хорошо подойдет для обогрева дачного домика или подсобного помещения. Печка из газового баллона своими руками – смотрите инструкцию по изготовлению.

Как собрать пресс для топливных брикетов своими руками, вы узнаете в этой статье.

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

Видео на тему

Ссылка на основную публикацию