Принцип работы светодиода: белый, желтый, кластер, из чего сделан и конструкция

Как устроены и работают светодиоды

Излучающие свет полупроводниковые приборы широко используются для работы систем освещения и в качестве индикаторов электрического тока. Они относятся к электронным устройствам, работающим под действием приложенного напряжения.

Поскольку его величина незначительная, то подобные источники относятся к низковольтным приборам, обладают повышенной степенью безопасности по воздействию электрического тока на организм человека. Риски получения травм возрастают тогда, когда для их свечения используются источники повышенного напряжения, например, бытовой домашней сети, требующие включения в схему специальных блоков питания.

Отличительной чертой конструкции светодиода является более высокая механическая прочность корпуса, чем у ламп «Ильича» и люминесцентных. При правильной эксплуатации они работают долго и надежно. Их ресурс в 100 раз превышает показатели нитей накаливания, достигает ста тысяч часов.

Однако, этот показатель характерен для индикаторных конструкций. У мощных источников для освещения применяются повышенные токи, а срок эксплуатации снижается в 2÷5 раз.

Устройство светодиода

Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: анодом и катодом. Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.

Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:

Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.

Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.

На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.

Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.

Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.

Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.

Принципы излучения света

Полупроводниковый переход p-n типа подключают к источнику постоянного напряжения в соответствии с полярностью выводов.

Внутри контактного слоя веществ p- и n-типов под его действием начинается движение свободных отрицательно заряженных электронов и дырок, которые обладают положительным знаком заряда. Эти частицы направляются к притягивающим их полюсам.

В переходном слое заряды рекомбинируют. Электроны проходят из зоны проводимости в валентную, преодолевая уровень Ферми.

За счет этого часть их энергии освобождается с выделением световых волн различного спектра и яркости. Частота волны и цветопередача зависят от вида смешанных материалов, из которых сделан p-n переход.

Для излучения света внутри активной зоны полупроводника требуется соблюсти два условия:

1. пространство запрещенной зоны по ширине в активной области должно быть близко к энергии излучаемых квантов внутри видимого человеческому глазу диапазона частот;

2. чистоту материалов полупроводникового кристалла необходимо обеспечивать высокую, а количество дефектов, влияющих на процесс рекомбинации — минимально возможным.

Эта сложная техническая задача решается несколькими путями. Один из них — создание нескольких слоев p-n переходов, когда образуется сложная гетероструктура.

Влияние температуры

При увеличении уровня напряжения источника сила тока через полупроводниковый слой возрастает и свечение увеличивается: в зону рекомбинации поступает повышенное количество зарядов за единицу времени. Одновременно происходит нагрев токоведущих элементов. Его величина критична для материала внутренних тоководов и вещества p-n перехода. Излишняя температура способна их повредить, разрушить.

Внутри светодиодов энергия электрического тока переходит в световую непосредственно, без излишних процессов: не так, как у ламп с нитями накаливания. При этом образуются минимальные потери полезной мощности, обусловленные низким нагреванием токопроводящих элементов.

За счет этого создается высокая экономичность этих источников. Но, их можно применять только там, где сама конструкция защищена, блокирована от внешнего нагрева.

Особенности световых эффектов

При рекомбинации дырок и электронов в разных составах веществ p-n перехода создается неодинаковое излучение света. Его принято характеризовать параметром квантового выхода — количеством выделенных световых квантов для единичной рекомбинированной пары зарядов.

Он формируется и происходит на двух уровнях светодиода:

1. внутри самого полупроводникового перехода — внутренний;

2. в конструкции всего светодиода в целом — внешний.

На первом уровне квантовый выход у правильно выполненных монокристаллов может достигать величины, близкой к 100%. Но, для обеспечения этого показателя требуется создавать большие токи и мощный отвод тепла.

Внутри самого источника на втором уровне часть света рассеивается и поглощается элементами конструкции, чем снижает общую эффективность излучения. Максимальное значение квантового выхода здесь намного меньше. У светодиодов, испускающих красный спектр, оно достигает не более 55%, а у синих снижается еще больше — до 35%.

Виды цветовой передачи света

Современные светодиоды излучают:

Желто-зеленый, желтый и красный спектр

В основе p-n перехода используются фосфиды и арсениды галлия. Эта технология была реализована в конце 60-х годов для индикаторов электронных приборов и панелей управления транспортной техники, рекламных щитов.

Такие устройства по светоотдаче сразу обогнали основные источники света того времени — лампы накаливания и превзошли их по надежности, ресурсу и безопасности.

Голубой спектр

Излучатели синего, сине-зеленого и особенно белого спектров долго не поддавались практической реализации из-за трудностей комплексного решения двух технических задач:

1. ограниченных размеров запрещенной зоны, в которой осуществляется рекомбинация;

2. высоких требований к содержанию примесей.

Для каждой ступени повышения яркости синего спектра требовалось увеличение энергии квантов за счет расширения ширины запретной зоны.

Вопрос удалось разрешить включением в вещество полупроводника карбидов кремния SiC или нитридов. Но, у разработок первой группы оказался слишком низкий КПД и маленький выход излучения квантов для одной рекомбинированной пары зарядов.

Повысить квантовый выход помогло включение в полупроводниковый переход твердых растворов на основе селенида цинка. Но, такие светодиоды обладали повышенным электрическим сопротивлением на переходе. За счет этого они перегревались и быстро перегорали, а сложные в изготовлении конструкции отвода тепла для них эффективно не работали.

Впервые светодиод голубого свечения удалось создать при использовании тонких пленок из нитрида галлия, наносимых на сапфировую подложку.

Белый спектр

Для его получения используют одну из трех разработанных технологий:

1. смешивание цветов по методике RGB;

2. нанесение трех слоев из красного, зеленого и голубого люминофора на светодиод ультрафиолетового диапазона;

3. покрытие голубого светодиода слоями желто-зеленого и зелено-красного люминофора.

При первом способе на единой матрице размещают сразу три монокристалла, каждый из которых излучает свой спектр RGB. За счет конструкции оптической системы на основе линзы эти цвета смешивают и получают на выходе суммарный белый оттенок.

У альтернативного метода смешение цветов происходит за счет последовательного облучения ультрафиолетовым излучением трех составляющих слоев люминофора.

Особенности технологий белого спектра

Методика RGB

задействовать в алгоритме управления освещением различные комбинации монокристаллов, подключая их поочередно вручную или автоматизированной программой;

вызывать различные цветовые оттенки, меняющиеся по времени;

создавать эффектные осветительные комплексы для рекламы.

Простым примером такой реализации служат цветовые елочные гирлянды. Подобные алгоритмы также широко используют дизайнеры.

Недостатками светодиодов RGB конструкции являются:

неоднородный цвет светового пятна по центру и краям;

неравномерный нагрев и отвод тепла с поверхности матрицы, ведущий к разным скоростям старения p-n переходов, влияющий на балансировку цветов, изменению суммарного качества белого спектра.

Эти недостатки вызваны разным расположением монокристаллов на базовой поверхности. Они сложно устраняются и настраиваются. За счет подобной технологии RGB модели относятся к наиболее сложным и дорогим разработкам.

Светодиоды с люминофором

Они проще в конструкции, дешевле в производстве, экономичнее при пересчетах на излучение единицы светового потока.

Для них характерны недостатки:

в слое люминофора происходят потери световой энергии, которые понижают светоотдачу;

сложность технологии нанесения равномерного слоя люминофора влияет на качество цветовой температуры;

люминофор обладает меньшим ресурсом, чем сам светодиод и быстрее стареет при эксплуатации.

Особенности светодиодов разных конструкций

Модели с люминофором и RGB-изделия создаются для разного промышленного и бытового применения.

Способы питания

Индикаторный светодиод первых массовых выпусков потреблял около 15 мА при питании от чуть меньшей величины, чем два вольта постоянного напряжения. Современные изделия имеют повышенные характеристики: до четырех вольт и 50 мА.

Светодиоды для освещения питаются таким же напряжением, но потребляют уже несколько сотен миллиампер. Производители сейчас активно разрабатывают и проектируют устройства до 1 А.

С целью повышения эффективности светоотдачи создаются светодиодные модули, которые могут использовать последовательную подачу напряжения на каждый элемент. В таком случае его величина возрастает до 12 либо 24 вольт.

При подаче напряжения на светодиод требуется учитывать полярность. Когда она нарушена, то ток не проходит и свечения не будет. Если же используется переменный синусоидальный сигнал, то свечение происходит только при прохождении положительной полуволны. Причем его сила так же пропорционально меняется по закону появления соответствующей величины тока с полярным направлением.

Следует учитывать, что при обратном напряжении возможен пробой полупроводникового перехода. Он происходит при превышении 5 вольт на одном монокристалле.

Способы управления

Для регулировки яркости излучаемого света применяют один из двух методов управления:

1. величиной подключаемого напряжения;

Первый способ простой, но неэффективный. При снижении уровня напряжения ниже определённого порога светодиод может просто потухнуть.

Метод же ШИМ исключает подобное явление, но он значительно сложнее в технической реализации. Ток, пропускаемый через полупроводниковый переход монокристалла, подается не постоянной формой, а импульсной высокой частоты со значением от нескольких сотен до тысячи герц.

За счет изменения ширины импульсов и пауз между ними (процесс называют модуляцией) осуществляется регулировка яркости свечения в широких пределах. Формированием этих токов через монокристаллы занимаются специальные программируемые управляющие блоки со сложными алгоритмами.

Спектр излучения

Частота выходящего из светодиода излучения лежит в очень узкой области. Ее называют монохроматической. Она кардинальным образом отличается от спектра волн, исходящего от Солнца или нитей накаливания обычных осветительных ламп.

О влиянии такого освещения на человеческий глаз ведется много дискуссий. Однако, результаты серьезных научных анализов этого вопроса нам неизвестны.

Производство

При изготовлении светодиодов используется только автоматическая линия, в которой работают станки-роботы по заранее спроектированной технологии.

Физический ручной труд человека полностью исключен из производственного процесса.

Подготовленные специалисты осуществляют только контроль за правильным протеканием технологии.

Анализ качества выпускаемой продукции тоже входит в их обязанности.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Как устроен и работает светодиод

С момента открытия монохромных красных светодиодов в 1962 году началось активное развитие полупроводниковых источников света.

Открытие синего и белого диодов перевело технологию на новый уровень.

С тех пор постоянно меняется устройство светодиода, его характеристики и конструкция. Сейчас они широко используются в светотехнике, электронике и других областях.

Что такое светодиод простыми словами

Светодиод – это полупроводниковое устройство, создающее излучение при прохождении через него электрического тока. Из чего состоит светодиод: из кристалла, заключенного в защитный корпус с выводами. Кристалл расположен на непроводящей подложке и излучает определенный цвет. Для получения нужного свечения используются химические составы из различных полупроводников и люминофоры.

Кристалл состоит из двух и более полупроводников разного типа проводимости. Принцип работы светодиода следующий – в прямом направлении через него пропускают электрический ток. В электронно-дырочном переходе на границе двух веществ происходит движение электронов и дырок, в результате чего выделяется энергия в виде кванта света и прибор начинает светить.

  • высокая светоотдача;
  • высокая механическая прочность и виброустойчивость;
  • долгий срок работы;
  • малый нагрев;
  • от количества циклов включения-выключения не зависит срок работы;
  • различный спектр белых светодиодов – от 2700 К до 6500 К;
  • спектральная чистота, полученная благодаря принципу устройства;
  • отсутствует задержка при включении;
  • широкий диапазон углов излучения (от 15 градусов до 180 градусов);
  • электрическая безопасность, так как не требуются высокие напряжения;
  • отсутствие чувствительности к низким температурам;
  • надежность;
  • разнообразие форм;
  • экономичность;
  • экологичность, ввиду отсутствия в конструкции светодиода ртути и других вредных компонентов в составе светоизлучающего диода.
  • нельзя допускать работы при высоких температурах – кристалл начинает деградировать;
  • высокая стоимость готового изделия.

Применение:

  • уличное, домашнее и производственное освещение;
  • индикация;
  • уличная реклама, бегущие строки;
  • фонари и светофоры;
  • подсветка экранов телефона, телевизора, компьютера и других жидкокристаллических дисплеев;
  • игрушки, значки и другие развлекательные элементы;
  • диодные дорожные знаки;
  • световые шнуры Дюралайт;
  • в фитолампах.
Читайте также:  Как сделать заземление если его нет в квартире: зачем оно нужно, способы проведения

Осветительный прибор на основе светодиодов состоит из:

Из крупных производителей светодиодов можно выделить японскую фирму Nichia Corporation и ее подразделение Nichia Chemical. Они являются лидерами по изготовлению сверхъярких диодов синего, белого и зеленого цвета. Также изготовлением излучающих диодов занимаются компании Phillips, Cree, Seoul Semiconduction из российских можно выделить Оптоган и Светлана-Оптоэлектроника.

В Nichia Chemical впервые разработали белый и синий светодиод.

Как устроены и чем отличаются светодиоды разных типов

Светодиоды можно классифицировать по разным критериям. Основное отличие – в технологии и электрических параметрах.

Сокращение DIP пошло от слов Direct In-line Package. Такие светодиоды известны еще с конца прошлого века. Устройство представляет собой стеклянную или пластиковую прозрачную колбу размером 3 или 5 мм, в которой находится полупроводниковый кристалл. Колба является линзой и формирует направленный пучок света. Кристалл закрепляется на катоде, который с помощью провода соединяется с анодом. Из корпуса выходят контакты в виде металлических ножек, через которые светодиод и включается в схему.

По форме бывают круглые, овальные, прямоугольные. Напряжение питания – до 5 В при 25 мА.

Обычно внутри линзы располагается один кристалл, но есть модели с двумя и более разных цветов. Такие модели могут оснащаться тремя и четырьмя выводами. Принцип работы светодиода подобного вида задает микрочип.

Dip светодиоды являются малоточными, они используются в гирляндах, для индикации, в подсветке, уличном освещении. По сравнению с SMD диодами они имеют следующие преимущества:

  • яркость;
  • направленный световой поток;
  • долгий срок службы при работе на улице;
  • потребление электроэнергии.

Основной недостаток – большой размер, от 3 мм.

Важно! С течением времени яркость свечения может уменьшаться. Это связано с деградацией кристалла и материалов, из чего делают светодиоды.

Светодиоды SMD – это приборы для крепления на поверхность. В настоящее время этот тип диодов является самым востребованным. С их появлением расширились возможности создания осветительных систем. Начали уменьшаться размеры светильника, монтаж автоматизирован.

Как устроен светодиод SMD – излучающий кристалл закреплен на подложке, от которой отводится тепло. К ней вмонтированы выходы. Внутри размещен управляющий чип. Защитой является овальная или сферическая линза из стекла или пластика.

  • небольшая цена;
  • надежность;
  • срок службы;
  • высокая светоотдача.

SMD светодиоды в смеху включаются при помощи специального клея. Самые маленькие диоды имеют размер 0,6х0,3 мм. Максимальная яркость – 8000 кд/кв.м.

Существует технология, при которой кристалл наносится на проводящую подложку без использования корпуса. В качестве защиты используется специальный слой, который выбирается по назначению светодиодов.

Используются для подсветки интерьеров, уличных билбордов, рекламных экранов с широким разрешением.

Chip On Board (COB) светодиоды имеют большое количество кристаллов на одной подложке. Также их называют светодиодной матрицей. Сверху заливается люминофором.

  • простота монтажа;
  • хороший поток света;
  • высокий CRI;
  • разнообразие форм.

  • стоимость;
  • самый срок службы;
  • светоотдача ниже, чем у SMD.

КОБы активно используются в создании ярких прожекторов и в других светильниках, где требуется акцентированная подсветка.

Важно! Из-за высокого нагрева требуется силиконовая оптика. Она устойчива к высоким температурам. Перед подключением ее нужно подготовить, иначе подложка деформируется и кристалл повредится.

Как работают светодиоды: принцип действия

Электрический ток преобразуется в свет в кристалле. Он состоит из двух полупроводников различного типа проводимости – n и p. N-проводимость обеспечивается легированием электронов в полупроводник, p – дырок.

Принцип действия светодиода заключается в появлении свечения при рекомбинации электронов и дырок в p-n переходе под действием тока, приложенного в прямом направлении. В результате перехода электронов с одного энергетического уровня на другой появляются фотоны.

Не все полупроводниковые материалы способны давать свет при рекомбинации. Для создания светодиодов используются прямозонные полупроводники, в которых разрешен прямой оптический переход зона-зона. К таким материалам относятся A3B5 (InP, GaAs), A2B4 (CdTe). В зависимости от состава можно получать светодиоды от ультрафиолетовых до инфракрасных.

Как работает светодиод, зависит от электронно-дырочного перехода. Условия пропускания света p-n переходом:

  • близость ширины запрещенной зоны к энергии кванта света;
  • минимальное содержание дефектов в полупроводниковом кристалле.

Для реализации этих требований одного p-n перехода недостаточно. Нужно создавать многослойные структуры – гетероструктуры, состоящие из нескольких полупроводников.

Получение светодиода определенного цвета

Для получения светодиода того или иного цвета используется три технологии – покрытие люминофором, использование RGB светодиодов и применение разных полупроводниковых материалов.

Покрытие люминофором

Люминофором называется вещество, которое может преобразовать поглощаемую энергию в свет. Получение светодиодов путем нанесения люминофора на поверхность имеет свои преимущества:

  • простота конструкции;
  • низкая стоимость производства;
  • экономия.

К недостаткам относятся:

  • снижение светоотдачи из-за потери световой энергии;
  • влияние на цветовую температуру;
  • быстрее стареет при эксплуатации.

Люминофор используется в белых светодиодах. С помощью люминофорного покрытия создаются диоды с различной цветовой температурой.

RGB-технология

Смешивание цветов по RGB технологии также помогает получить светодиоды различного спектра (обычно используются для белого). На матрице устанавливаются 3 монокристалла, каждый из них дает свой спектр RGB. Путем конструирования оптической системы цвета смешиваются и дают нужный оттенок.

  • возможность поочередного включения того или иного цвета вручную или автоматически;
  • можно вызывать разные оттенки, меняющиеся по времени;
  • создание эффектных осветительных конструкций для рекламы и дизайна.
  • неравномерность светового пятна;
  • неравномерность нагрева и отвода тепла.

Отрицательные качества вызваны расположением кристаллов полупроводника на поверхности. Из-за этого качественно организовать RGB модель сложно.

Применение различных примесей и полупроводников

Работа светодиода напрямую зависит от материала, из которого он выполнен. Использование полупроводников с различной шириной запрещенной зоны можно добиться нужного света от диода. От ширины запрещенной зоны зависит длина волны.

Для получения приборов в инфракрасном и красном цветовом спектре используются твердые растворы на основе арсенида галлия. Оранжевые, желтые и зеленые цвета получаются при помощи фосфида галлия. Синие, фиолетовые и ультрафиолетовые изготавливаются на основе нитрида галлия.

Основные выводы

Светодиоды – это компоненты, которые активно используются во многих сферах деятельности. Их можно встретить в освещении улиц и домов, подсветке экранов мобильного телефона и компьютера, в качестве индикаторов. Строение элемента: полупроводниковый кристалл, подложка, линза и электроды.

Излучающие диоды бывают нескольких типов – SMD, DIP, COB, они различаются по конструкции и техническим характеристикам. Получить устройство нужного цвета можно с помощью RGB технологии, нанесения люминофора на поверхность и путем подбора полупроводников для кристалла. Производство светодиодов активно развивается, и появляются все новые приборы с улучшенными характеристиками.

Устройство и принцип работы светодиодов

С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты. В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень. Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.

В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.

Как устроен каждый из перечисленных видов, и какие физические процессы вынуждают полупроводниковый кристалл светиться?

Что такое светодиод?

Перед разбором устройства и принципа работы, кратко рассмотрим, что светодиод из себя представляет.

Светодиод – это полупроводниковый компонент с электронно-дырочным переходом, создающий оптическое излучение при пропускании электрического тока в прямом направлении.

В отличие от нити накала и люминесцентных источников света, испускаемый свет светодиодом лежит в небольшом диапазоне спектра. То есть кристалл светоизлучающего диода испускает конкретный цвет (в случае со светодиодами видимого спектра). Для получения определенного спектра излучения в светодиодах используют специальный химический состав полупроводников и люминофора.

Устройство, конструкция и технологические отличия

Существует много признаков, по которым можно классифицировать светодиоды на группы. Одним из них является технологическое отличие и небольшое различие в устройстве, которое вызвано особенностью электрических параметров и будущей сферой применения светодиода.

Цилиндрический корпус из эпоксидной смолы с двумя выводами стал первым конструктивом для светоизлучающего кристалла. Закругленный цветной или прозрачный цилиндр служит линзой, формируя направленный пучок света. Выводы вставляются в отверстия печатной платы (DIP) и с помощью пайки обеспечивают электрический контакт.

Излучающий кристалл располагается на катоде, который имеет форму флажка, и соединяется с анодом тончайшим проводом. Существуют модели с двумя и тремя кристаллами разного цвета в одном корпусе с количеством выводов от двух до четырёх. Кроме этого, внутри корпуса может быть встроен микрочип, управляющий очередностью свечения кристаллов либо задающий чистоту его мигания. Светодиоды в DIP корпусе относятся к слаботочным, используется в подсветке, системах индикации и гирляндах.

В попытках нарастить световой поток, появился аналог с усовершенствованным устройством в DIP корпусе с четырьмя выводами, известный как «пиранья». Однако увеличенная светоотдача нивелировалась размерами светодиода и сильным нагревом кристалла, что ограничило область применения «пираньи». А с появлением SMD технологии их производство практически прекратилось.

Полупроводниковые приборы с креплением на поверхность печатной платы коренным образом отличаются от предшественников. Их появление расширило возможности конструирования систем освещения, позволило снизить габариты светильника и полностью автоматизировать монтаж. Сегодня SMD-светодиод – это самый востребованный компонент, используемый для построения источников света любых форматов.

Основа корпуса, на которую крепится кристалл, является хорошим проводником тепла, что в разы улучшило отвод тепла от светоизлучающего кристалла. В устройстве белых светодиодов между полупроводником и линзой присутствует слой люминофора для задания нужной цветовой температуры и нейтрализации ультрафиолета. В SMD-компонентах с широким углом излучения линза отсутствует, а сам светодиод имеет форму параллелепипеда.

Chip-On-Board – одно из новейших практических достижений, которое в ближайшем будущем займет лидерство по производству белых светодиодов в искусственном освещении. Отличительная черта устройства светодиодов по технологии COB заключается в следующем: на алюминиевую основу (подложку) через диэлектрический клей крепят десятки кристаллов без корпуса и подложки, а затем полученную матрицу покрывают общим слоем люминофора. В результате получается источник света с равномерным распределением светового потока, исключающий появление теней.

Разновидностью COB является Chip-On-Glass (COG), которая подразумевает размещение множества мелких кристаллов на поверхности из стекла. В частности, широко известны филаментные лампы на 220 В, в которых излучающим элементом служит стеклянный стержень со светодиодами, покрытыми люминофором.

Принцип работы светодиода

Несмотря на рассмотренные технологические особенности, работа всех светодиодов базируется на общем принципе действия излучающего элемента. Преобразование электрического тока в световой поток происходит в кристалле, который состоит из полупроводников с разным типом проводимости. Материал с n­-проводимостью получают путем его легирования электронами, а материал с p-проводимостью – дырками. Таким образом, в сопредельных слоях создаются дополнительные носители заряда противоположной направленности. В момент подачи прямого напряжения начинается движение электронов и дырок к p-n-переходу. Заряженные частицы преодолевают барьер и начинают рекомбинировать, в результате чего протекает электрический ток. Процесс рекомбинации дырки и электрона в зоне p-n-перехода сопровождается выделением энергии в виде фотона.

Вообще, данное физическое явление применимо ко всем полупроводниковым диодам. Но в большинстве случаев длина волны фотона находится за пределами видимого спектра излучения. Чтобы заставить элементарную частицу двигаться в диапазоне 400-700 нм ученым пришлось провести немало экспериментов с подбором подходящих химических элементов. В результате появились новые соединения: арсенид галлия, фосфид галлия и более сложные их формы, каждая из которых характеризуется своей длиной волны, а значит, и цветом излучения.

Кроме полезного света, испускаемого светодиодом, на p-n-переходе выделяется некоторое количество теплоты, которая снижает эффективность полупроводникового прибора. Поэтому в конструкции мощных светодиодов должна быть продумана возможность реализации эффективного отвода тепла.

Как работает светодиод и как устроен

В данной информационной статье мы постараемся в полной мере описать принцип работы светодиодов всех разновидностей, имеющихся в природе на сегодняшний день. Рассмотрим общее устройство LED и разберемся как получаются светоизлучающие диоды разных цветов.

Принцип работы

Наверное, каждый человек знает, что принцип действия светодиода заключается в его «свечении» при подключении к источнику питания. Однако за счет чего это достигается? Давайте разберемся более детально в этом вопросе.

Для создания видимого светового потока конструкция светодиода предусматривает наличие двух полупроводников, один из которых в своем составе должен содержать свободные электроны, а другой – «дыры».

Таким образом, между полупроводниками возникает «P-N» переход, в результате которого электроны от донора переходят в другой полупроводник (реципиент) и занимают свободные дыры с выделением фотонов. Эта реакция проходит только при наличии источника постоянного тока.

Принцип действия разобрали, однако благодаря чему происходит этот процесс? Для этого необходимо рассмотреть конструктивную особенность светодиода.

Как устроен светодиод

В независимости от модели светодиода (СОВ, OLED, SMD и т.д.) они состоят из следующих элементов:

  1. Анод (подача положительной полуволны на кристалл);
  2. Катод (подача отрицательной полуволны постоянного тока на кристалл полупроводника);
  3. Отражатель (отражение светового потока на рассеиватель);
  4. Чип или кристалл полупроводника (излучение светового потока за счет «P-N» перехода);
  5. Рассеиватель (увеличение угла свечения светодиода).
Читайте также:  Клеммники для соединения проводов: разновидности, плюсы и минусы, в щиток

Теперь ознакомимся со способами получения различных цветов.

Получение светодиода определенного цвета

Ранее мы разобрали принцип работы светодиода и выяснили, что световой поток образуется при возникновении «P-N» перехода в полупроводнике с выделением фотонов видимых человеческому глазу. Однако каким же образом можно получить различное свечение светодиода? Для этого существует несколько вариантов. Рассмотрим каждый из них.

Покрытие люминофором

Данная технология позволяет получить практически любой цвет, однако зачастую используется для получения белых светодиодов. Для нее применяют специальный реагент – люминофор, которым покрывают красный или синий светодиод. После обработки синий светоизлучающий диод начинает светить белым.

RGB — технология

Подобный тип устройств способен излучать любой оттенок светового спектра за счет применения в одном кристалле 3-х светодиодов: красного, зеленого и синего. В зависимости от интенсивности свечения каждого из них, меняется излучаемый свет.

Применение различных примесей и различных полупроводников

Благодаря данной технологии, изменяется длина волны излучаемого светового потока в зоне «P-N» перехода. А как известно, в зависимости от длинны волны, ее цвет меняется. Более наглядно это можно увидеть на следующем фото:

Теперь давайте разберем следующий вопрос: какими электрическими характеристиками обладают данные устройства и что нужно для их надежной работы.

Электрические характеристики

Светодиоды – это устройства, излучающие световой поток при прохождении через них стабилизированного постоянного напряжения низкого номинала (3-5В). За счет создания разности потенциалов на аноде и катоде в кристалле возникает электрический ток, создающий световой поток.

Для полноценной работы LED, величина тока должна быть на уровне 20-25 мА. Однако для мощных светодиодов, ток потребления может достигать 1400 мА.

При увеличении напряжения источника питания, сила тока увеличивается по экспоненте. Это означает что при незначительном скачке напряжения питания сила тока увеличивается многократно, что может привести к повышению температуры и выходу из строя светоизлучающего диода(читайте, как проверить светодиод). Именно по этой причине источник постоянного напряжения необходимо стабилизировать с помощью специальных микросхем.

Теперь рассмотрим основные разновидности LED, их достоинства и недостатки.

Устройство светодиода индикаторного типа (DIP)

Данный тип LED – это «первопроходцы» в сфере светодиодной техники. Они предназначаются для промышленности в качестве индикаторов.

Они состоят из 3-х или 5-и миллиметрового корпуса, анода, катода, кристалла, золотого (в бюджетных вариантах медного) проводника, соединяющего анод с кристаллом и рассеивателя.

На практике применяются очень редко, т.к. имеют ряд недостатков:

  • большой размер;
  • малый угол свечения (до 120 0 );
  • низкое качество кристалла (при длительной работе яркость излучения падает до 70%);
  • слабый световой поток за счет малой пропускной способности кристалла (до 20мА).

Как устроен мощный светодиод

Мощные светоизлучающие диоды (например, фирмы cree) предназначены для создания интенсивного светового потока за счет прохождения через кристалл большого тока (до 1400 мА).

На кристалле выделяется большое количество тепла, которое с помощью алюминиевого радиатора отводится от кристалла полупроводника. Также этот радиатор служит в качестве отражателя для увеличения светового потока.

Для надежной работы мощных LED необходимо наличие в схеме специального драйвера рассчитанного на прохождение большого потока электронов, который помимо стабилизации напряжения должен ограничивать ток, соответствующий номинальной работе устройства.

Устройство филаментного светодиода

Светодиоды типа filament были изобретены еще в начале 2008 года. Однако пик их популярности приходится на 2014-2016 года. Они стали популярными у дизайнеров, поскольку напоминали обычные лампы накаливания и потребляли минимальное количество электроэнергии. Рекомендуем почитать интересную статью про филаментные светодиодные лампы.

Конструкция

Филаментные LED – это устройства, состоящие из сапфирового или обычного стекла диаметр, которого не превышает 1,5мм и специально выращенных кристаллов полупроводников (28 штук) соединённых последовательно на изолированной подложке.

Эти светодиоды помещаются в специальную колбу, покрываемую люминофором, за счет чего можно получить любой цвет. Основное достоинство LED устройств, разработанных по данной технологии – это угол свечения, достигающий 360 0 .

Филаментные светоизлучающие диоды некоторые источники относят к классу COB (смотрите раздел ниже), поскольку кристаллы выращиваются на стекле или сапфире по аналогичной технологии.

Устройство и принцип работы светодиода COB

Технология СОВ или же Chip-On-Board – это одна из современных разработок в сфере электроники, заключающаяся в помещении большого количества кристаллов полупроводника с помощью диэлектрического клея на алюминиевую подложку. Также изготовление светодиодов подобного типа возможно на стеклянной матрице (COG) однако принцип работы у них одинаков.

Полученная матрица покрывается люминофором. В результате удается достичь равномерного свечение COB светодиода любого оттенка по всей площади. Данные устройства широко применяются в разработке телевизоров, ноутбуков и планшетов.

Принцип работы

Несмотря на то, что СОВ светодиоды имеют специфическое название, принцип его действия полностью аналогичен обычным индикаторным светоизлучающим диодам разработанных в 1962 году. При прохождении тока через кристаллы полупроводника возникает «P-N» переход и как следствие – световой поток.

Отличительной особенностью данного типа устройств является наличие большого количество кристаллов, что позволяет получить более интенсивный световой поток.

Устройство и принцип работы органического светодиода OLED

Самое новое достижение в сфере производства – это технология OLED. Она позволяет производить высокотехнологические телевизоры с тонким дисплеем, миниатюрные смартфоны, планшеты и еще многие другие приборы, без которых не обойтись в современном обществе.

Устройство OLED

Светоизлучающий диод OLED состоит из:

  • анода, изготовленного из смеси оксида индия с оловом;
  • подложки из фольги, стекла или же пластика;
  • алюминиевого или кальциевого катода;
  • излучающей прослойки на основе полимера;
  • токопроводящего слоя из органических веществ.

Как работает данная технология?

Принцип действия OLED аналогичен светодиодам СОВ, SMD и DIP и заключается в образовании «P-N» перехода в полупроводниках. Однако отличительной особенностью технологии ОЛЕД является применение специальных полимеров, из которых состоит светоизлучающая прослойка, за счет которой увеличивается срок службы светодиода, световой поток видимого спектра и угол свечения.

Достоинства

  • минимальные размеры;
  • низкое энергопотребление;
  • равномерное свечение по всей площади;
  • длительный срок эксплуатации;
  • увеличенный срок службы;
  • широкий угол свечения (до 270 0 );
  • низкая себестоимость.

Мы рассмотрели основные типы светоизлучающих диодов, которые применяются в современном мире, однако на ряду с ними, корейские ученые пошли дальше и разработали LED на основе волокон, которые по их обещаниям вытеснят все устаревшие типы устройств. Давайте рассмотрим, что они собой представляют.

Устройство и принцип работы светодиода на основе волокон

Для производства светодиодов данной ниши применяют нити терефталата полиэтилена обработанные раствором PEDOT:PSS polystyrene sulfonate. После обработки нить будущего светодиода просушивают при температуре 130 0 С.

После, заготовку обрабатывают по технологии OLED специальным полимером poly-(p-phenylenevinylene) polymer и полученные волокна покрывают тонким слоем суспензии литий-алюминиевого фторида.

Выводы

Мы рассмотрели основные типы светодиодов, которых как Вы можете видеть существует огромное количество. Однако по принципу работы они все одинаковы.

Также можно сказать, что благодаря применению современных материалов и технологий производства можно добиться высоких технических показателей и более надежной и длительной работы светодиодов.

Для наглядности рекомендуем просмотреть видео, в котором Вы подробно ознакомитесь с конструкцией LED:


Устройство светодиода: принцип работы и конструкция

Наверняка в наше время нет таких людей, которые ни разу не сталкивались со светодиодами. Ведь сейчас они повсюду – их используют и для простых фонариков, и для ламп домашнего освещения, и для фонарных столбов на улицах, и для автомобилей, и даже для чайников с подсветкой. И это не удивительно, ведь на данный момент более экологичного и энергосберегающего, да к тому же еще и столь компактного вида осветительных приборов не существует.

Конечно, почти каждый видел свечение работающего LED-компонента и знает, что такое светодиод, но очень многие даже представления не имеют, как устроен этот элемент освещения. А ведь такие знания могут пригодиться, и потому имеет смысл попытаться разъяснить устройство светодиода и принцип его работы, рассказать о существующих в наше время видах и модификациях.

Вообще начало этим компактным световым элементам было положено в середине прошлого столетия и применялись они лишь для индикации подсветки в различных приборах, т. к. свет их был не очень ярким, можно сказать, даже тусклым. Однако все изменилось в конце ХХ века с появлением синего светового диода, а уже после появились яркие элементы подобного типа зеленого, желтого и белого цвета.

Светодиод представляет собой миниатюрный световой прибор в корпусе из литого пластика различных цветов с двумя и более контактами на основе кристалла. На сегодняшний день это довольно распространенный вид освещения.

Кто-то может сказать, что в эти дебри не стоит и лезть, что это все очень сложно, но на самом деле светодиоды просты, как все гениальное, и понять, как работает светодиод, не составит труда. Итак, приступим.

Классификация светодиодов

Классифицируют светодиоды по многим характеристикам, но основной из них является небольшая технологическая разница в устройстве, которая вызвана различием по электрическим параметрам, равно как и областью использования осветительного прибора на кристаллах. А из чего состоит светодиод, можно увидеть на картинке выше.

Различают несколько конструкций светодиодов в зависимости от того, как он устроен.

Имеет корпус в виде цилиндра на два контакта. Это первый из изобретенных светодиодов. Сама его оболочка из эпоксидной смолы, закругленная сверху, работает как линза, направляя световой поток в нужном направлении. Выводные контакты утапливаются ножками в специальные отверстия печатной платы и припаиваются. Сам излучатель располагается на катоде, имеющем форму флажка и присоединенном к аноду тонким проводком.

Различные модификации могут иметь и два, и три кристалла различных цветов, объединенных одним корпусом с двумя-четырьмя выводами. К тому же некоторые могут быть оборудованы и встроенным микроконтроллером, который управляет режимами включения или задает время мерцания кристаллов.

Подобные DIP-элементы являются слаботочными. Используют их в основном, как индикаторы или в качестве световых элементов гирлянд.

DIP-светодиод

Конечно, как и любой прибор, его пытались усовершенствовать с целью наращивания светового потока, в результате чего был произведен более высокотехнологичный светодиод в том же корпусе на четыре вывода. Такая конструкция светодиода была названа «пиранья».

Но увеличившийся световой поток привел, естественно, и к увеличению элемента, и к нагреву кристаллов, в результате этого «пиранья» не получила широкого применения. Ну а при появлении на рынке радиоэлектроники SMD-компонентов, имеющих другое строение, смысл в производстве подобных светодиодов и вовсе пропал.

Данный компонент на кристаллах отличен от предыдущего в первую очередь тем, что его монтаж производится непосредственно на поверхность печатной платы. По сути, его изобретение произвело прорыв в данной области. И если при монтаже DIP-светодиодов можно был крепить элементы лишь только по одной стороне платы, т. к. токопроводящие дорожки находились на другой, то с приходом SMD-компонентов появилась возможность монтировать двухсторонние печатные платы.

Это, вкупе с более мелкими габаритами элементов, позволило значительно снизить размеры приборов на их основе и полностью автоматизировать процесс сборки печатных плат.

На сегодняшний день подобные светодиоды являются самыми востребованными и используются для изготовления различных световых приборов. Основание корпуса SMD-светодиода, сверху которого закреплен кристалл, служит ему также и радиатором. К тому же слой люминофора между линзой и полупроводником (от чего зависит цвет светодиода) может иметь различный состав и позволяет нейтрализовать излучение ультрафиолета.

SMD-светодиод

Есть и такие SMD-светодиоды, у которых нет линзы. Такой элемент выпускается в форме прямоугольника или квадрата и имеет более широкий угол излучения.

СОВ (Chip-On-Board)

Расшифровка названия данного компонента в переводе с английского звучит как «чип на доске». Новейшая разработка, которая, скорее всего, очень скоро станет лидером среди светодиодов в создании искусственного освещения.

Отличаются подобные компоненты тем, что на алюминиевом основании (подложке) посредством диэлектрического клея закрепляется не один, а множество кристаллов, не имеющих корпусов, а после готовая матрица покрывается полностью люминофором.

В итоге получившийся таким образом светодиод равномерно распределяет световой поток, исключающий тенеобразование.

Существует и еще одна разновидность светодиодов СОВ – это компоненты, созданные по технологии COG (Chip-On-Glass, что означает «чип на стекле»). Кристаллы здесь размещены не на алюминиевой подложке, а на стеклянной. Как раз на основе светодиодов, созданных по такой технологии, появилась возможность производства довольно известных филаментных ламп, которые работают от сети с напряжением 220 вольт. Излучателем в них служит стержень из стекла с кристаллами, на которые нанесен слой люминофора.

СОВ-светодиод

Принцип действия светодиода

Независимо от описанных технических классификаций принцип работы всех без исключения светодиодов основан на излучающем элементе. Кристалл, который является по своей сути полупроводником, имеющим различные типы проводимости, преобразует электрический ток в свечение. N-проводимый материал получается при помощи легирования электронами, ну а p-проводимый – дырами. В итоге происходит создание новых носителей заряда с противоположной направленностью.

Читайте также:  Заземление по ПУЭ: нормы, термины и определения, заземление оборудования

В результате, когда подается прямое напряжение, электроны, как и дыры, начинают движение в сторону p-n-перехода. При преодолении барьера заряженными частицами начинается их рекомбинация. В итоге это и создает возможность прохождения электрического тока. Ну а в процессе рекомбинирования электроны и дыры уже выделяют фотоны.

Применение подобного физического явления относится ко всем элементам, подпадающим под определение полупроводникового диода. Проблема в том, что пределы видимого спектра излучения расположены ближе длины фотонов. По этой причине учеными была проведена огромная работа над тем, чтобы упорядочить движение частиц, заставив их двигаться в промежутке от 400 до 700 нм.

Но зато после всех проведенных экспериментов появилось несколько новых соединений вроде арсенида галлия и фосфида галлия, ну и, конечно, их более сложных форм, которые имеют различную длину волн, т. е. цвет излучения.

Принцип излучения света полупроводником

Конечно же, при подобной работе по выделению света должно образовываться и тепло, хотя и в небольших количествах, ведь законы физики никто не отменял. По этой причине (ведь нагрев снижает производительность полупроводников) при установке светодиодов большой мощности появляется необходимость охлаждения, для чего и требуется радиатор. Роль такого охлаждающего элемента в СОВ, к примеру, и играет алюминиевое основание, на котором расположены кристаллы.

Спектры излучения

Современные светодиоды имеют шесть основных спектров, т. е. их свечение может быть желтым, зеленым, красным, синим, голубым и белым. И самым сложным для ученых оказалось создание голубого светового элемента на кристаллах.

Вообще частота исходящих от светодиодов излучений лежит в узком направлении. Опираясь на все данные, ее можно назвать монохромной. И естественно, что она имеет кардинальное отличие от частоты солнечного излучения или ламп накаливания.

Уже не первый год ведутся споры по поводу влияния подобного излучения на зрение человека, равно как и на весь организм в целом. Но проблема заключается в том, что все подобные дискуссии так до сих пор ни к чему и не привели, потому как нет ни одного документального доказательства о проведении исследований в этой области.

Преимущества

Если рассматривать преимущества светодиодов, то их наберется весьма значительное количество.

Во-первых, они очень экономичны в плане расхода электроэнергии. На сегодняшний день нет световых приборов, которые могли бы с ними соревноваться по этому параметру. Причем это никак не отражается на силе светового потока, излучаемого элементами на кристаллах.

К экономичности можно отнести и срок службы подобных LED-компонентов, т. к. частое приобретение приборов освещения негативно сказывается на финансовом состоянии. Если посмотреть на статистику, то светодиодные лампы приходится покупать в 10 раз реже, чем люминесцентные, а лампочки накаливания вообще меняются чаще в 35–40 раз. В то же время расход электроэнергии при использовании светодиодов в сравнении с «лампочкой Ильича» ниже на 87%!

Во-вторых, светодиодные лампы удобны и просты в подключении и не требуют при этом каких-то особых навыков. К тому же, к примеру, в тех же рекламных щитах при выходе из строя нескольких элементов не произойдет ничего страшного. На его работе это никак не отразится. Ну а при огромном сроке службы светодиодов решается и проблема их замены. А главное удобство – это то, что работать такие элементы могут практически при любой температуре.

В-третьих, это, конечно, их надежность. Ведь для того, чтобы расколоть лампу накаливания или люминесцентную трубку, не нужно прикладывать особых усилий. А вот со светодиодом придется повозиться. Эпоксидный корпус так легко не расколоть.

Нельзя обойти вниманием и эстетическую сторону данного вопроса, ведь возможность игры с цветом при применении этих источников освещения практически ничем не ограничена, кроме воображения, фантазии человека. Работу со светодиодами можно сравнить с искусством рисования художником своих полотен.

А потому, несмотря на то, что в наше время продажи подобных световых элементов пока не слишком внушительны, скорее всего, пройдет совсем немного времени, и светодиоды выйдут на первое место по этому показателю, вытеснив остальные виды освещения с прилавков магазинов электротехники.

Светодиодные модули, кластеры, линейки, панели, табло, экраны – в чем отличие?

Светодиоды завоевали мир. Светодиодные фонарики, ленты, линейки, прожекторы, кластеры, панели, бегущие строки, дорожные знаки, экраны, табло, мониторы, индикаторы, светофоры и т. д. — всюду сегодня можно встретить светодиоды.

В рамках данной статьи мы сравним некоторые популярные ипостаси применимости светодиодов, рассмотрим особенности устройств, принципы их действия и сферы применения. Короче говоря, ответим на вопросы о том, в чем же различие между светодиодной линейкой и лентой, панелью и табло, кластером и модулем.

Для изготовления систем подсветки, и вообще осветительных устройств, часто применяют светодиодные линейки. Данные приборы представляют собой продолговатые светодиодные модули различного размера, имеющие прочное или гибкое основание, на котором закреплены светодиоды с токоограничительными цепями.

Светодиодные линейки успешно используются как внутри помещений, так и за их пределами, для изготовления световой рекламы и архитектурной подсветки. Монтаж линейки осуществляется легко, часто путем приклеивания ее на самоклеющееся основание. При необходимости линейку можно разрезать по нанесенным на ее поверхность меткам.

Светодиодные линейки востребованы на складах, в магазинах и в торговых центрах, в ночных клубах, в выставочных залах, в общественном транспорте, на предприятиях, на парковках и т. д. Особенно популярны светодиодные линейки в декоративном освещении: для подсветки рабочих поверхностей, ниш, полок, стен, потолков, полов и многого другого.

Применение цветных светодиодных линеек с RGB – контроллером открывает поистине широчайшие возможности для создания самых поразительных светодинамических эффектов.

Линейки бывают гибкими, жесткими и на алюминиевой основе. Гибкие очень популярны в автотюнинге, жесткие — для стендов и витрин, алюминиевые имеют увеличенный рабочий ресурс и применимы в более жестких условиях, особенно в конструкциях работающих на открытом воздухе. Очень просто заменить люминесцентную лампу в светильнике на светодиодную линейку — более энергоэффективную, яркую, и безопасную для здоровья (нет мерцания и ультрафиолета).

Линейки на алюминиевом основании лучше отдают тепло, поэтому они привлекательнее чем светодиодные ленты в плане оформления витрин, щитов, рекламных вывесок. Рабочий ресурс линеек на алюминиевом основании (в силу высокой прочности и отличной теплопроводности) значительно превышает ресурс светодиодных лент. Примечательно здесь и то, что несколько линеек можно разместить на радиаторе большой площади.

Говоря о современном светодиодном освещении различного назначения, нельзя не упомянуть светодиодные панели, представляющие собой очень функциональные осветительные приборы, хорошо пригодные как для жилых, так и для производственных помещений. Любители изысканностей в интерьере высоко их ценят, не говоря уже о безупречных технических характеристиках, свойственных светодиодам в принципе.

Прочный алюминиевый сплав обеспечивает превосходную теплопроводность для охлаждения светодиодов. Сами же светодиоды располагаются по периметру панели либо по всей ее площади. В первом случае для надлежащего рассеивания света служит особая отражающая матрица, перенаправляющая световой поток на специальный рассеиватель, перпендикулярно вниз – в освещаемое помещение.

Панели монтируются как обычные светильники, в них часто встроены собственные стабилизированные блоки питания. Цвет свечения выбирают от одного конкретного оттенка до просто холодного белого — все зависит от того, какие светодиоды в панели установлены.

Светодиодные потолочные панели выпускаются как стандартной квадратной формы размером 600 на 600, так и других размеров в форме овала, прямоугольника, круга и т. д. Есть настенные, напольные, декоративные для полок и прочие светодиодные панели, включая панели для дизайнерского и студийного освещения на штативах. Панели приемлемы для детских комнат, поскольку излучают безопасный свет без мерцания и без вредного ультрафиолета, с возможностью регулировки светового потока (включая режим ночника).

Светодиодные кластеры (они же светодиодные модули)

Светодиодным кластером или модулем называется часть определенного размера, включающая в себя несколько светодиодов, работающих совместно по определенному алгоритму. Другими словами, кластер (модуль) – это маленькая светоизлучающая сборка, состоящая из светодиодов.

Светодиодные кластеры бывают одноцветными и многоцветными. Многоцветные RGB светодиодные кластеры содержат на себе светодиоды трех цветов, чтобы от кластера можно было бы получить свет любого желаемого оттенка.

Каждый кластер имеет свой собственный корпус, причем несколько кластеров могут соединяться корпусами друг с другом, благодаря модульной конструкции, и образовывать единый блок. Поэтому кластеры еще называют модулями.

Кластеры представляют собой, как правило, залитые компаундом ячейки, которые можно объединять, и строить таким образом, как из пикселей, различные экраны и табло. Кластеры специального назначения так и называются «модуль экрана» или «модуль табло».

Различные кластеры отличаются между собой размером, цветом свечения, количеством светодиодов, их яркостью, параметрами питания и способом управления блоком. Вообще, по степени сложности, можно встретить сегодня на рынке светодиодные модули (кластеры) следующих трех типов: без цепочек ограничения тока, с цепочками ограничения тока, и с контроллерами управления питанием.

Простейшие кластеры содержат на себе только светодиоды, и здесь необходимо будет последовательно присоединять токоограничительную цепь. Кластеры со встроенными ограничительными элементами сразу подключаются к контроллеру. Кластеры со встроенным контроллером — просто питаются и управляются (изменяются цвет и яркость) по специальной шине (трехпроводной или двухпроводной).

Цвет кластера может быть красным, синим, зеленым, желтым, белым, также встречаются двухцветные (например зеленый с красным) или многоцветные (RGB – кластеры). В зависимости от количества в кластере светодиодов и от их мощности, кластер получается более или менее ярким, большего или меньшего размера, большей или меньшей площади, при этом яркость одного кластера по статистике не превышает 1 канделы.

Кластер часто оснащен линзой, иногда и отражателем, может быть укомплектован креплением, солнцезащитным козырьком и прочими защитными элементами, влияющими на габариты кластера.

Достоинства светодиодных кластеров очевидны. Кластеры компактны, благодаря чему их можно использовать в условиях ограниченной площади. Срок службы светодиодов превышает 10 лет, а их эффективность многократно превосходит как лампы накаливания, так и неоновые лампы.

Светодиоды хорошо переносят низкие температуры, обладают высокой прочностью, без проблем сочетаются в схемах с диммерами. Широкий ассортимент светодиодных кластеров, представленных на рынке сегодня, позволяет реализовывать самые невероятные проекты дизайнеров.

Электронные табло во все времена служили для отображения информации. Раньше их составляли из лампочек, сегодня применяют светодиоды. К электронным табло относятся как устройства отображения статической или динамической картинки, так и бегущие строки и даже светодиодные настенные часы.

Такие решения часто можно встретить на рынках, в торговых центрах, в спортивных сооружениях, возле аптек, на пунктах обмена валют и много где еще. По желанию клиента, фирмы-изготовители создают самые разные светодиодные табло.

Табло любого размера собирается из маленьких светодиодных кластеров (сегментов). Каждый сегмент может быть одноцветным (красным, синим, зеленым, белым и т. д.) полноцветным (RGB) или трехцветным.

Белые и красные светодиоды являются традиционно наиболее яркими. Трехцветные получаются из светодиодов двух цветов, сочетание двух цветов дает третий цвет. Полноцветные табло способны даже воспроизводить видеоролики и фотографии, ведь им в принципе доступно 16700000 оттенков.

Корпус табло обычно изготавливают из алюминиевого профиля, причем делают его герметичным, чтобы степень защиты оболочки соответствовала запросу заказчика. Для улицы нужен IP65 – чтобы выдерживал прямой поток воды. Монтаж на опору обычно петлевой. Такие табло управляются проводным способом, по Wi-Fi, по радиоканалу, с USB-флешки или через Ethernet.

Светодиодные экраны (LED-экраны)

Развитие светодиодных табло привело к появлению полноценных светодиодных экранов. Пикселем в них служат светодиодные кластеры или одиночные светодиоды. Благодаря таким экранам, улицы крупных городов заполонены сегодня рекламными роликами, информационными стендами, дорожными знаками и т. д.

С каждым годом количество рекламных светодиодных экранов на улицах городов растет и растет. Аналогичным методом создаются OLED-дисплеи для телевизоров, мониторов, разных приборов и т. д.

Самый большой в мире светодиодный телевизор находится на стадионе Ковбойз в Арлигтоне, штат Техас, США. Его размеры 49 × 22 метров, площадь 1078 квадратных метров (существуют светодиодные дисплеи и гораздо больших размеров, но они не предназначены для телевидения).

Светодиодные экраны есть кластерные и матричные. Про кластерные мы уже рассказали (в одном кластере несколько светодиодов), а матричные экраны содержат светодиодные не в маленьких блоках, а на больших платах вместе с управляющей электроникой.

К достоинствам светодиодных экранов можно отнести: высокую яркость, возможность получить большой размер и произвольное соотношение сторон, хорошая ремонтопригодность, способность работать практически в любом климатическом поясе (возможно с системой охлаждения).

Ссылка на основную публикацию