Петля фаза ноль: что это такое, периодичность проверки и прибор для измерения

Что такое петля фаза-ноль — для чего и как правильно ее измерять

Надежность электрической сети напрямую зависит от правильности срабатывания защитных устройств. Петля фаза ноль позволяет проверить их работоспособность в сети до 1 кВ с глухо-заземленной нейтралью. Поэтапно разберемся, что представляет собой схема «Ф-Н», а также нюансы ее проверки.

Общее представление о цепи «фаза ноль»

Большинство потребителей электроэнергии запитаны сетями с уровнем напряжения до 1 кВ через трехфазный трансформатор. Для обеспечения безопасности в них используется глухо-заземленная нейтраль. В ней возможно появление тока из-за сдвига фаз в обмотках трансформатора, которые соединены по схеме звезды.

В случае возникновения контакта между линейным и нулевым или защитным проводом формируется контур «фаза-нуль». Указанная связь приводит к образованию короткого замыкания. В цепи могут находиться соединительные провода, коммутационная и защитная аппаратура, что сопровождается формированием определенного значения сопротивления.

Зачем проверяется петля «фаза ноль»

Изучение показателей схемы «Ф-Н» осуществляется для определения слабых мест в действующей сети. Это может своевременно предотвратить развитие более серьезных аварий в питающей цепи. Еще одной важной функцией указанного тестирования является проверка соответствия установленных коммутационных и защитных устройств токам короткого замыкания. Это требуется для предотвращения воспламенения проводки.

Проведение испытаний электросети к содержанию ↑

Сроки проведения испытаний

Электрические сети и оборудование эксплуатируются в различных режимах. Со временем наблюдается естественное старение изоляции кабеля, ухудшение свойств проводников из-за токовых перегрузок, отклонений напряжения, влияния окружающей среды и т. д. Этим обусловлена необходимость в периодической проверке целостности контура фаза ноль.

В соответствии с указаниями ПУЭ испытание петли «Ф-Н» проводится, как минимум, один раз в 36 месяцев, а для электрических сетей, эксплуатируемых в опасных или агрессивных средах, как минимум, один раз в 24 месяца. Также предусматриваются внеплановые проверки, в следующих ситуациях:

  • при внедрении в работу нового оборудования;
  • после осуществления модернизации, профилактики или ремонта действующей сети;
  • по требованию поставщика электроэнергии;
  • по факту запроса от потребителя.

Периодичность осмотров электрооборудования жилых домов к содержанию ↑

Методы и порядок проверки сопротивления контура «Ф-Н»

Проверка сопротивления петли «фаза нуль» подразумевает замер тока короткого замыкания на конкретном участке электрической цепи. В дальнейшем зафиксированное значение сопоставляется с отключающими уставками автоматов. При этом измерения проводятся либо непосредственно под рабочим напряжением, либо с питанием от постороннего источника. Далее рассмотрим требуемую последовательность действий при проверке сопротивления.

Визуальный контроль

Первоначально понадобится изучить имеющиеся схемы и документацию. В дальнейшем осуществляется визуальный осмотр всех элементов цепи на предмет выявления явных недостатков и повреждений. В процессе выполнения указанных мероприятий рекомендуется проверить качество затяжки контактных соединений. Иначе велика вероятность получения недостоверных измеренных данных.

Осмотр элементов электросети на соответствие схеме к содержанию ↑

Замер показателей контура «Ф-Н»

В ходе испытаний могут использоваться различные специализированные приборы, которые могут использовать следующие методики измерений:

  1. Падения напряжения — проводится на обесточенной цепи с дальнейшим подсоединением сопротивления установленной величины. Зафиксированные показания сверяются с допустимыми нормами значениями после проведения расчетов.
  2. Короткого замыкания — предполагает осуществление испытаний при наличии напряжения. Измерительное устройство формирует искусственное короткое замыкание на конечном участке от ввода питания с дальнейшей фиксацией величины тока и времени отработки защитных элементов.
  3. Амперметра-Вольтметра — подразумевает применение понижающего трансформатора переменного тока с замыканием фазного провода на защитное заземление электрической цепи. Предварительно выполняется обесточивание питающей сети. Необходимые показания получаются после проведения расчетов.

Вычисления и оформление документации

Заключительным этапом испытания является расчет величины тока короткого замыкания. Он определяется по соотношению:

Uф — фазное напряжение сети;

R — полное сопротивление цепи.

Вычисленная величина сопоставляется с пределом отключения Iкз защитными аппаратами. Для определения минимальной и максимальной уставки срабатывания понадобится номинальный ток автомата увеличить в определенное количество раз, в зависимости от типа установленного защитного устройства. Ниже приведена требуемая кратность для минимального и максимального тока отключения по отношению к номинальному для конкретных серий автоматов:

  • В — 3 и 5;
  • С — 5 и 10;
  • D и К — 10 и 14.

Итог испытания подводится в специальном протоколе, о содержании которого будет указано далее с предоставлением примера заполнения.

Приборы для проведения измерений

Замерить основные показатели контура «Ф-Н» можно двумя типами приборов. Первые допускается использовать исключительно после снятия напряжения, а вторые способны работать под нагрузкой. Также имеются различия в выводе количества информации. Простые приборы выдают значения необходимые для вычисления Iкз. Более сложное исполнение измерителей позволяет сразу вывести значение Iкз.

Специалисты рекомендуют использовать следующие модели приборов:

  1. MZC 300 — современный микропроцессорный измеритель, о нюансах работы которого мы расскажем далее.
  2. М-417 — зарекомендовал себя с наилучшей стороны много лет назад. Испытания ведутся по методу падения напряжения. При этом измеритель можно использовать под рабочим линейным напряжением в сетях с глухо-заземленной нейтралью. Размыкание испытываемой схемы осуществляется за 0,3 с. Предварительно понадобится выполнить калибровку.
  3. ИФН-200 — предназначен для проверки цепей с сопротивлением до 1 кОм, с допустимым напряжением от 180 до 250 В. Помимо замера схемы «Ф-Н», способен функционировать и в других режимах. Память ИФН-200 может хранить данные о тридцати пяти крайних вычислениях.

Измеритель сопротивления ИФН-200 к содержанию ↑

Подведение итогов и опасности от проведения неправильного измерения

По полученной в результате измерений информации делается заключение о возможности дальнейшей эксплуатации сети. При выявлении несоответствия отключающих уставок защитных аппаратов зафиксированному Iкз, выносится решение о необходимости их замены. В противном случае велика вероятность образования пожара и разрушения электрооборудования под воздействием Iкз.

Протокол по проведенным замерам контура «фаза нуль»

На основании произведенных измерений оформляется специальный протокол. Он используется для хранения зафиксированных показаний, а также для осуществления сравнительного анализа с последующими тестами.

В протоколе отображается следующая информация:

  • дата проведения;
  • номер протокола;
  • цель проведения тестирования;
  • данные об организации, проводящей испытания;
  • информация о заказчике;
  • действующие климатические условия: атмосферное давление, температура и влажность воздуха;
  • диапазон измерения, класс точности и вид расцепителя;
  • измеритель, используемый для тестирования;
  • зафиксированные показания;
  • итог испытаний;
  • должности, фамилии и подписи лиц, проводивших замеры и проверивших протокол.

Обратите внимание! В случае положительного итога цепь допускается к эксплуатации без ограничений. При выявлении недостатков составляется перечень требуемых действий для восстановления необходимых показателей.

Техника безопасности при замере контура «Ф-Н»

Процедура замера контура фаза ноль должна вестись специалистами в возрасте от 18 лет, сдавшими экзамен по межотраслевым нормам и правилам техники безопасности. Работы должны осуществляться в соответствии с ПУЭ и при наличии требуемых приборов и инструментов.

Проведение работ должно оформляться нарядом или распоряжением. В состав бригады должны входить, как минимум, два специалиста с третьей группой по электробезопасности. Запрещается производить тестирование в условиях повышенной влажности и опасности.

Проведение проверки цепи фаза-ноль к содержанию ↑

Испытание цепи «Ф-Н» измерителем MZC 300

Измерение петли фаза ноль прибором MZC 300 требует соблюдения определенной последовательности действий, учитывая некоторые особенности устройства.

Обязательные условия

Первоначально рекомендуется включить MZC 300 и убедиться в отсутствии на экране надписи bAt. Она сигнализирует о разряженных батарейках, а следовательно, провести достоверные измерения не удастся.

В процессе осуществления замеров могут появляться характерные ошибки, обусловленные следующими причинами:

  1. Напряжение сети менее 180 или более 250 Вольт. В первом случае на экране высветится буква U в сопровождении с двумя звуковыми сигналами, а во втором надпись OFL и одно продолжительное звучание.
  2. Высокая нагрузка на измеритель, сопровождающаяся перегревом. На дисплее высветится буква T, а зуммер выдаст два длительных звука.
  3. Обрыв нулевого или защитного провода в исследуемой схеме, что сопровождается появлением на дисплее символа «— —» и продолжительным звуком.
  4. Превышено допустимое значение общего сопротивления исследуемой схемы — два продолжительных звука и символ «—».

Способы подключения

С помощью MZC 300 можно произвести замеры различных участков цепи. При этом необходимо обеспечить качественный контакт наконечников прибора.

Далее представлен порядок подключения измерителя в зависимости от вида проводимого тестирования:

  1. Снятие характеристик с петли «Ф-Н» — один наконечник измерителя фиксируется к нулевому (N) проводу, а второй поочередно устанавливается на линейные (L) провода.
  2. Проверка защитной цепи — один контакт поочередно крепится к линейным проводникам, а второй к защитному заземлению (PE).
  3. Тестирование надежности заземления корпуса электрооборудования производится в зависимости от типа сети — с занулением (TE) или с защитным заземлением (TT). При этом порядок производства измерений идентичен. Один наконечник прибора цепляется к корпусу электрооборудования, а второй поочередно к питающим проводникам.

Считывание показаний о напряжении сети

MZC 300 рассчитан на выдачу показаний фазного напряжения в пределах от 0 до 250 В. Для снятия данных понадобится нажать на клавишу «Start». При отсутствии указанных манипуляций измерительное устройство автоматически выведет на дисплей полученное значение, по истечении пяти секунд с момента начала тестирования.

Измерение характеристик контура «Ф-Н»

Для получения основных показателей в MZC 300 используется методика искусственного короткого замыкания. Она позволяет измерить полное сопротивление петли, разлагая на активную и реактивную составляющую, а также выдавая данные по углу сдвига фаз и величине предполагаемого Iкз. Для их поочередного просмотра понадобится нажимать кнопку «Z/I».

Измерительный ток протекает по тестируемому контуру в течение 30 мс. Для ограничения величины тока в схеме прибора смонтирован ограничивающий резистор на 10 Ом. При этом прибор автоматически устанавливает требуемую величину измерительного тока, учитывая уровень напряжения в сети и величину сопротивления схемы «Ф-Н».

Обратите внимание! При проведении тестирования важно учитывать, что прибор ведет расчеты с учетом номинального значения напряжения 220 В, независимо от действующих показаний в сети. Поэтому в дальнейшем необходимо осуществить корректировку полученного значения предполагаемого Iкз в цепи «Ф-Н». Для этого необходимо измерить действующее значение напряжения и разделить на 220. Полученное значение умножить на измеренный прибором Iкз.

При наличии в схеме УЗО следует предварительно исключить защитный аппарат из тестируемого контура посредством установки шунта. Это обусловлено тем, что подаваемый от MZC 300 измерительный ток приводит к отключению УЗО.

Вывод результатов измерения

После осуществления необходимых подключений на экране прибора будет отражаться уровень напряжения сети. Процесс измерения начинается после нажатия кнопки «Start». По факту окончания тестирования на дисплей выводится информация о величине полного сопротивления или предполагаемого Iкз, в зависимости от первоначальных установок. Для отображения других доступных показаний понадобится использовать клавишу «SEL».

Вывод результатов испытания на экран

Для получения достоверных измерений цепи «Ф-Н» рекомендуется воспользоваться услугами профессионалов. От правильности испытаний зависит дальнейшая безопасность эксплуатации электрической сети.

Почему измерение сопротивления петли фаза-ноль выполняют профессионалы и не делают халтурщики

Современный человек привык к тому, что электричество постоянно служит для удовлетворения его запросов и выполняет большую, полезную работу. Довольно часто сборку электрических схем, подключение электроприборов, электромонтаж внутри частного дома выполняют не только обученные электрики, но и домашние мастера или нанятые гастарбайтеры.

Однако, всем известно, что электричество опасно, может травмировать и поэтому требует качества выполнения всех технологических операций для надежного прохождения токов в рабочей схеме и обеспечения их высокой изоляции от окружающей среды.

Сразу же возникает вопрос: как проверить эту надежность после того, как работа вроде бы выполнена, а внутренний голос терзают сомнения по вопросу ее качества?

Читайте также:  Подрозетник для гипсокартона: размеры, конструкция и особенности монтажа

Ответ на него позволяет дать метод электрических измерений и анализа, основанный на создании повышенной нагрузки, который на языке электриков называют измерением сопротивления петли фаза-ноль.

Принцип формирования цепочки для проверки схемы

Кратко представим себе путь, который проходит электроэнергия от источника — питающей трансформаторной подстанции до розетки в квартире типового многоэтажного дома.

Обратим внимание, что в старых зданиях, оборудованных по системе заземления TN-C, еще может быть не закончен переход на схему TN-C-S. В этом случае расщепление PEN проводника в распределительном электрическом щитке дома не будет выполнено. Поэтому розетки подключены только фазным проводом L и рабочим нулем N без защитного РЕ-проводника.

Глядя на картинку можно понять, что длина кабельных линий от обмоток трансформаторной подстанции до конечной розетки состоит из нескольких участков и может в среднем иметь протяженность в сотни метров. В приведенном примере участвуют три кабеля, два распределительных щита с коммутационными аппаратами и несколько мест подключения. На практике же, имеется значительно большее количество соединительных элементов.

Такой участок имеет определенное электрическое сопротивление и вызывает потери и падение напряжения даже при правильном и надежном монтаже. Это значение регламентировано техническими нормативами и определяется при составлении проекта производства работ.

Любые нарушения правил сборки электрических схем вызывают его увеличение и создают несбалансированный режим работы, а в отдельных ситуациях и аварии в системе. По этой причине участок от обмотки трансформаторной подстанции вплоть до розетки в квартире подвергают электрическим измерениям и анализируют полученные результаты для корректировки технического состояния.

Вся протяженность смонтированной цепочки от розетки до обмотки трансформатора напоминает обыкновенную петлю, а поскольку она образована двумя токопроводящими магистралями фазы и нуля, то так и называется – петля фазы и нуля.

Более наглядное представление о ее формировании дает следующая упрощенная картинка, в которой более детально показан один из способов прокладки проводов внутри квартиры и прохождение токов по ней.

Здесь для примера показан включенный автоматический выключатель АВ, расположенный внутри электрического квартирного щитка, контакты распределительной коробки, к которым подсоединяются провода кабеля и нагрузка в виде лампочки накаливания. Через все эти элементы протекает ток в обычном режиме эксплуатации.

Принципы измерения сопротивления петли фаза-ноль

Как видим, к розетке по проводам подводится напряжение от понижающей обмотки трансформаторной подстанции, создающей протекание тока через лампочку, подключенную в розетку. При этом какая-то часть напряжения теряется на сопротивлении проводов подводящей магистрали.

Соотношения между сопротивлением, током и падением напряжения на участке цепи описывает знаменитый закон Ома.

Только надо учесть, что у нас не постоянный ток, а переменный синусоидальный, который характеризуется векторными величинами и описывается комплексными выражениями. На его полную величину влияет не одна активная составляющая сопротивления, а и реактивная, включающая индуктивную и емкостную части.

Эти закономерности описываются треугольником сопротивлений.

Электродвижущая сила, вырабатываемая на обмотке трансформатора, создает ток, который образует падение напряжения на лампочке и проводах схемы. При этом преодолеваются следующие виды сопротивлений:

активное у нити накала, проводов, контактных соединений;

индуктивное от встроенных обмоток;

емкостное отдельных элементов.

Основную долю полного сопротивления составляет активная часть. Поэтому во время монтажа схемы для приближенной оценки допускают его замер от источников постоянного напряжения.

Полное же сопротивление S участка петли фаза-ноль с учетом нагрузки определяют следующим образом. Вначале узнают величину ЭДС, создаваемую на обмотке трансформатора. Ее значение точно покажет вольтметр V1.

Однако, доступ к этому месту обычно ограничен, а выполнить такой замер невозможно. Поэтому делается упрощение — вольтметр вставляется в контакты гнезда розетки без нагрузки и фиксируется показание напряжения. Затем:

подключается амперметр, нагрузка и вольтметр к ней;

фиксируются показания приборов;

Выбирая нагрузку необходимо обратить внимание на ее:

стабильность во время проведения замеров;

возможность выработки тока в схеме порядка 10÷20 ампер, ибо при меньших значениях дефекты монтажа могут не проявиться.

Величину полного сопротивления петли с учетом подключенной нагрузки получают делением величины Е, замеренной вольтметром V1, на ток I, определенный амперметром А.

Полное сопротивление нагрузки вычисляется делением падения напряжения ее участка U2 на ток I.

Теперь остается только исключить сопротивление нагрузки Z2 из рассчитанной величины Z1. Получится полное сопротивление петли фаза-ноль Zп. Zп=Z2-Z1.

Технологические особенности замера

Любительскими измерительными приборами точно определить значение сопротивления петли практически невозможно из-за больших величин их погрешности. Работу надо выполнять амперметрами и вольтметрами повышенного класса точности 0,2, а они, как правило, используются только в электротехнических лабораториях. К тому же требуют умелого обращения и частых сроков проведения поверок в метрологической службе.

По этой причине замер лучше доверить специалистам лаборатории. Однако, они, скорее всего, будут использовать не единичные амперметр и вольтметр, а специально созданные для этого высокоточные измерители сопротивления петли фаза-ноль.

Рассмотрим их устройство на примере прибора, названного измерителем тока короткого замыкания типа 1824LP. Насколько корректен этот термин судить не будем. Скорее всего он использован маркетологами для привлечения покупателей в рекламных целях. Ведь этот девайс не способен измерять токи коротких замыканий. Он только помогает их рассчитывать после замеров при нормальном режиме эксплуатации сети.

Измерительный прибор поставляется вместе с проводами и наконечниками, уложенными внутрь чехла. На его лицевой панели расположена одна кнопка управления и дисплей.

Внутри полностью реализована электрическая схема замера, исключающая лишние манипуляции пользователя. Для этого он снабжен нагрузочным сопротивлением R и измерителями напряжения и тока, подключаемого нажатием кнопки.

Элементы питания, внутренней платы и гнезда для подключения соединительных проводов показаны на фотографии.

Подобные приборы подключаются щупами проводов к розетке и работают в автоматическом режиме. Часть из них обладает оперативной памятью, в которую заносятся результаты измерений. Их можно последовательно просмотреть через какое-то время.

Технология замера сопротивления автоматическими измерителями

На подготовленном для работы приборе устанавливают соединительные концы в гнезда и с обратной стороны подключают их к контактам розетки. Измеритель сразу автоматически определяет величину напряжения и выводит ее на дисплей в цифровом виде. В приведенном примере она составляет 229,8 вольта. После этого нажимают на кнопку переключения режимов.

Прибор замыкает внутренний контакт для подключения сопротивления нагрузки, создающего ток более 10 ампер в сети. После этого происходит замер тока и расчеты. Величина полного сопротивления петли фаза-ноль выводится на дисплей. На фотографии она равна 0,61 Ома.

Отдельные измерители во время работы используют алгоритм расчета тока короткого замыкания и дополнительно выводят его на дисплей.

Места выполнения замеров

Показанный двумя предыдущими фотографиями метод определения сопротивления полностью применим к схемам электропроводки, собранным по устаревшей системе TN-C. Когда в проводке присутствует РЕ-проводник, то необходимо определять его качество. Это делается подключением проводов прибора между контактом фазы и защитного нуля. Других отличий метода нет.

Электрики не только оценивают сопротивление петли фаза-ноль на конечной розетке, но часто эту процедуру необходимо выполнять на промежуточном элементе, например, клеммнике распределительного шкафа.

У трехфазных систем электроснабжения проверяют состояние цепи каждой фазы по отдельности. Через любую из них может когда-нибудь потечь ток короткого замыкания. А как они собраны покажут измерения.

Зачем выполняется замер

Проверка сопротивления петли фаза-ноль проводится с двумя целями:

1. определение качества монтажа для выявления слабых мест и ошибок;

2. оценка надежности работы выбранных защит.

Выявление качества монтажа

Метод позволяет сравнить измеренную реальную величину сопротивления с расчетной, допускаемой проектом при планировании работ. Если прокладка электропроводки выполнялась качественно, то замеренная величина будет соответствовать требованиям технических нормативов и обеспечит условия безопасной эксплуатации.

Когда расчетное значение петли неизвестно, а реальное замерено, то можно обратиться к специалистам проектной организации для выполнения расчетов и последующего анализа состояния сети. Второй путь — самостоятельно попробовать разобраться в таблицах проектировщиков, но это потребует инженерных знаний.

При завышенном сопротивлении петли придется искать брак в работе. Им может быть:

грязь, следы коррозии на контактных соединениях;

заниженное сечение проводов кабеля, например, использование 1,5 квадрата вместо 2,5;

некачественное выполнение скруток, изготовленных уменьшенной длиной без сварки концов;

использование материала для токоведущих жил с повышенным удельным сопротивлением;

Оценка надежности работы выбранных защит

Задача решается следующим образом.

Мы знаем величину номинального напряжения сети и определили значение полного сопротивления петли. При возникновении металлического короткого замыкания фазы на ноль по этой цепочке потечет ток однофазного КЗ.

Его величина определится по формуле Iкз=Uном/Zп.

Рассмотрим этот вопрос для значения полного сопротивления, например, в 1,47 Ом. Iкз=220 В/1,47Ом=150А

Такую величину мы определили. Теперь остается по ней оценить качество выбора номиналов защитного автоматического выключателя, установленного в эту цепочку для ликвидации аварий.

Вспомним, что ПУЭ требуют выбирать автомат, обеспечивающий величину 1,1 номинального тока (Iном N) для АВ с расцепителями мгновенного действия. В этом пункте под N=5, 10, 20 используются характеристики расцепителя типов «В», «С», «D». Более подробно об особенностях использования времятоковых характеристик можно прочитать здесь: Характеристики автоматических выключателей

Допустим, что в электрощитке установлен автоматический выключатель класса «С» с номинальным током 16 ампер и кратностью 10. Для него ток отключения КЗ электромагнитным расцепителем должен быть не менее, чем рассчитанный по формуле: I=1,1х16х10=176 А. А мы рассчитали 150 А.

Делаем 2 вывода:

1. Ток работы электромагнитной отсечки меньше, чем может возникнуть в схеме. Поэтому отключения автоматического выключателя от нее не будет, а произойдет только работа теплового расцепителя. Но его время превысит 0,4 секунды и не обеспечит безопасность — высока вероятность возникновения пожара.

2. Автоматический выключатель установлен неправильно и подлежит замене.

Все перечисленные факты позволяют понять почему профессиональные электрики уделяют особое внимание надежной сборке электрических цепей и выполняют замер сопротивления петли фаза-ноль сразу после монтажа, периодически в процессе эксплуатации и при сомнениях в правильности работы защитных автоматов.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Что такое петля фаза-ноль простым языком – методика проведения измерения

Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.

Что подразумевается под термином петля фаза-ноль?

Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль.

Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:

  • сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
  • невозможно рассчитать влияние аварийной ситуации на сопротивление.

Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.

Читайте также:  Светильники для бани: влагозащищенные, можно ли использовать светодиодные

Для чего проверяют сопротивление петли фаза-ноль

Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. Результатом измерения петли фаза-ноль является практическое нахождение сопротивления силовой линии до автомата. На основе этого рассчитывается ток короткого замыкания (напряжение сети делим на это сопротивление). После чего делаем вывод: сможет ли автомат, защищающий данную линию отключиться при КЗ.

Например, если на линии установлен автомат C16, то максимальный ток КЗ может быть до 160 А, после чего он расцепит линию. Допустим в результате измерения получим значение сопротивления петли фазы-ноль равным 0,7 Ом в сети 220 В, то есть ток равен 220 / 0,7 = 314 А. Этот ток больше 160 А, поэтому автомат отключится раньше, чем начнут гореть провода и поэтому считаем, что данная линия соответствует норме.

Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.

Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:

  • неплотный контакт на клеммах;
  • несоответствие тока характеристикам провода;
  • уменьшение сопротивления провода из-за устаревания.

Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.

Периодичность проведения измерений

Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:

  1. После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
  2. При требовании со стороны обслуживающих компаний.
  3. По запросу потребителя электроэнергии.

Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.

Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.

Какие приборы используют?

Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:

  • М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
  • MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
  • ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.

Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.

Как измеряется сопротивление петли фаза ноль

Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:

  • Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
  • Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
  • Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.

Петля фаза ноль. Для чего проверяют сопротивление петли фаза-ноль?

Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке. Этот метод электрики называют измерением сопротивления петля фаза ноль.

Что это такое, и как формируется проверочная схема

Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

Итак, от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их. Что это такое, и как формируется проверочная схема.

Видео измерения петля фаза ноль

Необходимо отметить, что вся электрическая цепочка – это зацикленный контур, образованный фазным контуром и нулевым. По сути, это своеобразная петля. Поэтому ее так и называют петля фаза ноль.

Как измеряется сеть

Чтобы это понять, необходимо рассмотреть схему, в которой присутствует потребитель, подключенный через обычную розетку. Так вот к розетке, как уже было сказано выше, подводятся фаза и ноль. При этом до розетки происходит потеря напряжения за счет сопротивления магистральных кабелей и проводов. Это известно давно, описан данный процесс формулой Ома:

Правда, эта формула описывает соотношение величин постоянного электрического тока. Чтобы перевести ее на ток переменный, придется учитывать некоторые показатели:

  • Активная составляющая сопротивления сети.
  • Реактивная, состоящая из емкостной и индуктивной части.

Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

  • Активное – это потребитель и провода. Это самая большая часть сопротивления.
  • Индуктивное – это сопротивление встроенных обмоток.
  • Емкостное – это сопротивление отдельных элементов.

Как измерить сопротивление петля фаза ноль

Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу, которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

Внимание! Нагрузка на розетке должна быть стабильной в процессе проведения замеров. Это первое. Второе – оптимальным вариантом считается, если в схеме ток будет силой от 10 до 20 ампер. В противном случае дефекты сетевого участка могут не проявиться.

Теперь по закону Ома можно определить полное сопротивление петли. При этом придется учитывать, что напряжение (замеряемое) в розетке может отклоняться от номинального при нагрузке и без таковой. Поэтому сначала надо высчитать сопротивление при разных величинах напряжения. Понятно, что при нагрузке напряжение будет больше, поэтому полное сопротивление петли – это разница двух сопротивлений:

Rп=R2-R1, где R2 – это сопротивление петли при нагрузке, R1 – без таковой.

Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2).

Процесс измерения петля фаза ноль

Хотя надо отдать должное рынку, сегодня можно такие приборы приобрести в свободном доступе. Стоят они недешево, но для профессионала это необходимая вещь.

Где провести замер

Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите. Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

Цель проводимых замеров

Итак, цели две – определение качества эксплуатируемых сетей и оценка надежности защитных блоков и приборов.

Что касается первой позиции, то здесь придется сравнивать полученные замеры, а, точнее, сопротивление петли с проектной. В данном случае, если расчетный показатель оказался выше нормативного, то на поверку явно неправильно произведенный монтаж или другие дефекты магистрали. К примеру, грязь или коррозия контактов, малое сечение кабелей и проводов, неграмотно проведенные скрутки, плохая изоляция и так далее. Если проект электрической сети по каким-то причинам отсутствует, то для сравнения расчетного сопротивления петли с номинальным необходимо будет обратиться в проектную организацию. Чтобы разобраться в таблицах и расчетах самому, надо в первую очередь обладать инженерными знаниями по электрике.

Замер сопротивления петля фаза ноль

Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть. Поэтому в данном случае используется формула:

Если считать, что сопротивление петли фаза к нулю равно, например, 1,47 Ом, то сила тока короткого замыкания будет равна 150 ампер. Под эту величину и придется подбирать прибор защиты, то есть, автомат. Правда, в правилах ПУЭ есть определенные нормы, которые создают некий запас прочности. Поэтому Iном увеличивают на коэффициент 1,1.

Подобрать автомат под все вышеуказанные величины можно, если сравнить их в таблицах ПУЭ. В нашем случае потребуется автомат класса «С» с Iном=16 А и кратностью 10. В итоге получаем:

I = 16 х 10 х 1,1 = 176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

  • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
  • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.

Все об петли фаза-ноль

Нередко в домашней электрической проводке и силовых подстанциях возникают неполадки, в результате которых происходит естественный перекос фаз по нейтральной электроцепи. В таком случае, чтобы предотвратить проблему, делают измерение петли фазы ноль. Что это такое, как правильно произвести замер петли фаза нуль, какие приборы для этого использовать? Об этом и другом далее.

Читайте также:  Характеристика автоматического выключателя категории d: отличия между категориями

Что это такое

Петля фаза ноль — параметр, который по техническим нормативам должен проверяться в силовых установках, имеющих глухозаземленную нейтраль и напряжение до тысячи вольт. Это величина, которая нужна, чтобы предотвратить появление тока в электроцепи нейтрали из-за естественного фазного перекоса. Она образуется при подключении фазного провода к проводнику защитного или нулевого типа. В конечно итоге, образуется контур, имеющий собственное сопротивление с перемещающимся по нему электрическому току. Этот контур может состоять из защитного автомата, клеммов и других связующих.

Измерить самостоятельно петлю сложно из-за имеющихся недостатков. Так, сложно подсчитать все коммутационные элементы на выключателях, рубильниках, которые могли измениться при сетевой эксплуатации. Кроме того, нереально сделать расчет влияния аварии на значение сопротивления. Лучшим при этом методом будет замер поверенным аппаратом с учитыванием погрешностей.

Как проверить петлю

Проверка петли нужна для профилактики, а также для того, чтобы обеспечить корректную работу защитного оборудования с автоматическими выключателями, УЗО и диффавтоматами. Самой распространенной проблемой подключения чайника или другого электроприбора является отключение нагрузки автомата.

Обратите внимание! Ложное срабатывание защиты с нагревом кабелей и пожаром является большой показатель сопротивления.

Проверка делается для того, чтобы успешно работали удаленные и более массивные электрические приемники, но не больше 10% от всего числа. Проверка создается с помощью формулы Zпет = Zп + Zт / 3 где Zп является полным сопротивлением проводов петли фазы-ноль, а Zт считается показателем полного сопротивления трансформаторного питания.

Испытуемое электрооборудование отключается от сети. Потом создается на трансформаторной установке искусственный вид замыкания первого фазного провода на электроприемный корпус. После того, как будет подано напряжение, измеряется сила тока и напряжения вольтметром.

Обратите внимание! Сопротивление петли будет равно делению показателя напряжения на силу тока. Приобретенный результат должен быть арифметически сложен с полным сопротивлением трансформатора, поделенного на цифру 3.

Как делают замеры

Замеры нужно проводить по нормативному техническому документу ПТЭЭП, в соответствии с конкретной периодичностью — 1 раз в несколько лет. Система ППР прописывает необходимость текущего и капитального ремонта электрического оборудования. Это нужно, чтобы работало оборудование исправно.

Приборы для замеров

Учитывая тот факт, что результаты измерений петли востребованы, в качестве измерительных приборов применяется обычно мультиметр. Из других приборов используются наиболее часто:

  • М-417 — стрелочное удобное и простое в эксплуатации устройство, которое основано на калибруемой схеме мостового типа. Работает без необходимости снятия напряжения величиной до 380 вольт.
  • МZC-300 — современный измерительный аппарат, имеющий цифровую обработку измеряемых параметров с отображением на дисплее. Чтобы измерять напряжение до 250 вольт, можно использовать контрольный вид сопротивления в 10 Ом.
  • ИФН-200 — прибор, работающий под напряжением до 250 вольт, который может быть применен в качестве тестера. Однако при петлевых замерах, диапазон значений сопротивления ниже 1000 Ом.

Стоит отметить, что параметровое петлевое измерение сопротивления петли фаза нуль простое. Все что нужно, это присоединить щупы к контактным местам, которые нужно предварительным образом почистить при помощи наждака или напильника, чтобы минимизировать контактное сопротивление. После этого включается оборудование и на табло появляется результат.

Рассчет петли фаза-ноль

Перед тем, как измерить петлю фаза-ноль, необходима проверка плотности проводного соединения к защитным аппаратам. Если не остаются протянутыми провода, то смысла в измерении нет, поскольку точные данные не будут получены.

Обратите внимание! Цель расчета в выяснении соответствия номинального тока защиты с проводным сечением электроцепи. Замер должен быть произведен на самой удаленной точки линии измерения.

Сделав замер полного сопротивления цепи фаза нуль по предложенной схеме, на приборном дисплее будет отражена величина тока короткого замыкания. Этот показатель нужно сравнить по характеристике времени и току с расцепительным током срабатывания выключателя иди с предохранительной вставкой.

По нормативным требованиям расчет петли должен быть произведен в электролаборатории. Чтобы произвести данные работы, нужно получить наряд-допуск. При этом испытания могут производить взрослые люди с необходимыми знаниями в месте, не отличающейся повышенной опасностью или высокой влажностью.

Сопротивление в петли фаза-ноль

Для подсчета полного сетевого сопротивления электроустановки, нужно определить показатель электродвижущей силы, создающейся на трансформаторных обмотках. При этом замер напряжения должен быть под нагрузкой, в дополнение к теме проверка петля фаза ноль требования. Для этого следует подключить в розетки какой-либо расчетный прибор. Это может быть лампочкой. Делается замер напряжения и силы тока. Затем по закону Ома можно сделать определение полного сопротивления петли. Нужно учесть, что напряжение, которое замеряется в розетке, может отклоняться от номинального при нагрузке. Проверять оборудование следует, принимая во внимание этот факт.

Обратите внимание! Показание полного сопротивления проводниковой защиты между шиной и корпусом должно быть удовлетворено требованию: ZPE=U0/Zф0≤50В

В целом, петля фаза ноль — это контур, образующийся в момент соединения фазного проводника и нулевого рабочего защитного проводника. Проверяется она при помощи специальной формулы или измерительного прибора. При этом для вычисления петли и возобновления работы электросистемы, необходимо знать величину ее сопротивления, которую также можно найти профессиональным оборудованием.


Какая периодичность электроизмерения сопротивления цепи «фаза-нуль» и замеров заземления электрооборудования?

Михаил
Здравствуйте! Подскажите, с какой периодичностью нужно проводить испытания сопротивления цепи петля-фаза-нуль и электроизмерения наличия цепи между заземлителями и заземляемыми элементами электрооборудования при контрольных (не приёмо-сдаточных) испытаниях в многоэтажном жилом доме. На основании каких документов проводят электроизмерения? С какой периодичностью требуется проводить электроиспытания? Спасибо!

Ответ:
Все электроизмерения проводятся на основании ПУЭ (правила устройства электроустановок) и ПТЭЭП (правила технической эксплуатации электроустановок потребителей).

Чем чаще потребитель электроэнергии будет проводить обследования, испытания и электроизмерения электроустановок, тем безопаснее и надёжнее будет эксплуатация электроснабжения его электрохозяйства.

В соответствии с ПТЭЭП, замеры сопротивления цепи «фаза-нуль» и замеры цепи между заземлёнными установками и элементами заземлённой установки проводятся с периодичностью, установленной системой ППР (планово-предупредительный ремонт), утвержденной техническим руководителем Потребителя. Визуальный осмотр между защитным проводником и электрооборудованием производиться не реже 1 раза в 6 месяцев.

По установленным правилам (госпожнадзора и энергонадзора), комплекс электроизмерений, в который входят замеры сопротивления петли «фаза-нуль» и замеры цепи между заземлёнными установками и элементами заземлённой установки, проводят не реже чем один раз в три года.

При отказе устройств защиты электроустановок и после переустановки электрооборудования, требуется выполнить электроизмерения цепи между заземлёнными установками и элементами заземлённой установки и электроизмерения сопротивления петли «фаза-нуль».

ПТЭЭП
2.7.9
Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным.
При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.
Результаты осмотров должны заноситься в паспорт заземляющего устройства.

2.7.13
Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования (Приложение 3) должны производиться:
измерение сопротивления заземляющего устройства;
измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
измерение токов короткого замыкания электроустановки, проверка состояния пробивных предохранителей;
измерение удельного сопротивления грунта в районе заземляющего устройства.
Для ВЛ измерения производятся ежегодно у опор, имеющих разъединители, защитные промежутки, разрядники, повторное заземление нулевого провода, а также выборочно у 2% железобетонных и металлических опор в населенной местности.
Измерения должны выполняться в период наибольшего высыхания грунта (для районов вечной мерзлоты — в период наибольшего промерзания грунта).
Результаты измерений оформляются протоколами.
На главных понизительных подстанциях и трансформаторных подстанциях, где отсоединение заземляющих проводников от оборудования невозможно по условиям обеспечения категорийности электроснабжения, техническое состояние заземляющего устройства должно оцениваться по результатам измерений и в соответствии с п.п.2.7.9-11.

2.7.14
Измерения параметров заземляющих устройств – сопротивление заземляющего устройства, напряжение прикосновение, проверка наличия цепи между заземлителями и заземляемыми элементами — производится также после реконструкции и ремонта заземляющих устройств, при обнаружении разрушения или перекрытия изоляторов ВЛ электрической дугой.
При необходимости должны приниматься меры по доведению параметров заземляющих устройств до нормативных.

3.6.2
Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее — К), при текущем ремонте (далее — Т) и при межремонтных испытаниях и измерениях, т.е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее — М), определяет технический руководитель Потребителя на основе Приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий.
Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1-28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.

3.6.3
Для видов электрооборудования, не включенных в настоящие нормы, конкретные нормы и сроки испытаний и измерений параметров должен устанавливать технический руководитель Потребителя с учетом инструкций (рекомендаций) заводов-изготовителей.

26
Заземляющие устройства
К, Т, М — производятся в сроки, устанавливаемые системой ППP

28
Электроустановки, аппараты, вторичные цепи, нормы испытаний которых не определены в разделах 2-27, и электропроводки напряжением до 1000 В К, Т, М — производятся в сроки, устанавливаемые системой ППP

28.4
Проверка срабатывания защиты при системе питания с заземленной нейтралью (TN-C, TNC-S, TN-S)

Проверяется непосредственным измерением тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петли фаза-нуль с последующим определением тока короткого замыкания. У электроустановок, присоединенных к одному щитку и находящихся в пределах одного помещения, допускается производить измерения только на одной, самой удаленной от точки питания установке. У светильников наружного освещения проверяется срабатывание защиты только на самых дальних светильниках каждой линии. Проверку срабатывания защиты групповых линий различных приемников допускается производить на штепсельных розетках с защитным контактом.

28.5
Проверка наличия цепи между заземленными установками и элементами заземленной установки

Производится на установках, срабатывание защиты которых проверено.

Читайте также:

  • Какова периодичность профилактического электроизмерения электрооборудования и электросетей?

2 Комментария(-ев) на ”Какая периодичность электроизмерения сопротивления цепи «фаза-нуль» и замеров заземления электрооборудования?”

Здравствуйте! Меня интересует немаловажный для многих жителей ЦАО г.Москвы вопрос: Наш дом построен в 1953 году, соответственно электричество проведено в тот же период. Взглянуть сегодня на состояние проводки, страшновато. Распределительный щит находиться в запущенном состоянии. Подключено к нему большое количество «дополнительных потребителей». Учитывая, стремительно развивающиеся технологии, эти «мамонты» не готовы к эксплуатации современной техники. Сколько времени отпущено на сроки эксплуатации электропроводки на площадях общего пользования, и кто отвечает за модернизацию и капитальный ремонт этих коммуникаций?

Здравствуйте, Елена!
Ответ на свой вопрос Вы сможете прочесть, пройдя по ссылке «Самовольная модернизация электроснабжения квартиры. Начало«.

Ссылка на основную публикацию