Ограничитель перенапряжения: принцип работы и технические характеристики

Школа молодого опнщика, назначение и принцип действия ОПН

На сайт Балтэнерго поступает много вопросов, связанных с ОПН. Часть из них носит конкретный характер, например, по дополнительным данным на приобретённый ограничитель. На подобные вопросы мы стараемся отвечать незамедлительно. Но часть вопросов носит общий характер. К примеру, по параметрам ограничителей, в том числе и по толкованию самих терминов, которые приведены в документации производителей ОПН. Это связано с тем, что в настоящее время практически не издаётся популярная научно-техническая литература по электротехнике, к тому же дешёвая, подобно широко известной в то время “Библиотеке электромонтёра” или “Массовой библиотеке инженера”. А несмотря на свою кажущуюся конструктивную простоту, ОПН – сложный электротехнический аппарат. Скажем так: ОПН – это просто, но не очень… И у теоретиков и у практиков есть много нерешенных вопросов. Достаточно сказать, что до сих пор не принят основополагающий документ по ОПН – ГОСТ, а целый ряд существующих документов имеют разночтения. Тем не менее, активное внедрение ограничителей в практику, тем более учитывая их роль в энергосистемах, ставит вопрос о более глубокой теоретической и практической подготовке обслуживающего персонала. Поэтому мы пришли к выводу о необходимости поместить на нашем сайте ряд взаимосвязанных статей по основам теории и практике ОПН, не особо теоретизируя и в то же время не упрощая подачу материала с тем, чтобы он был доступен широкому кругу практиков. Но так как большинству читателей –практиков основы защиты энергетических систем от перенапряжений известны ( по применению, например, вентильных разрядников), то общеизвестных истин повторять не будем. Конечно, при указанном подходе возможны некоторые упрощения, могут быть и неточности. Но мы открыты для любой критики, тем более конструктивной. Особенно ценны предложения по тематике будущих статей. По возможности, будем ссылаться на используемые источники- учебные пособия, статьи, документы и др. , но если вдруг кто-то из авторов не найдёт ссылки на свой труд – не обвиняйте нас в плагиате – ведь никаких коммерческих выгод от этих публикаций мы не получим.

Этот цикл статей назовём непритязательно – “ Школа молодого опнщика”. И так – урок первый. Начнём с назначения и принципа действия.

Урок 1. Назначение и принцип действия ОПН

Ограничители перенапряжений нелинейные (ОПН)-электрические аппараты, предназначенные для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. Основным элементом ОПН является нелинейный резистор – варистор ( varistor , от англ. Vari ( able ) ( Resi ) stor – переменное, изменяющееся сопротивление).

Основное отличие материала нелинейных резисторов ограничителей от материала резисторов вентильных разрядников состоит в резко нелинейной вольт-амперной характеристики (ВАХ) и повышенной пропускной способности. Применение в ОПН высоконелинейных резисторов позволило исключить из конструкции аппарата искровые промежутки, что устраняет целый ряд недостатков, присущих вентильным разрядникам.

Основной компонент материала резисторов ОПН – оксид (окись) цинка ZnO . Оксид цинка смешивают с оксидами других металлов – закисью и окисью кобальта, окисью висмута и др. Технология изготовления оксидно-цинковых резисторов весьма сложна и трудоёмка и близка к требованиям при производстве полупроводников – применение химически чистого исходного материала, выполнение требований по чистоте и т. д. Основные операции при изготовлении – перемешивание и измельчение компонентов, формовка ( прессование) и обжиг. Микроструктура варисторов включает в себя кристаллы оксида цинка (полупроводник n – типа) и междукристаллической прослойки ( полупроводник p – типа). Таким образом, варисторы на основе оксида цинка ZnO являются системой последовательно – параллельно включённых p – n переходов. Эти p – n переходы и определяют нелинейные свойства варисторов, то есть нелинейную зависимость величины тока, протекающего через варистор, от приложенного к нему напряжения.

В настоящее время варисторы для ограничителей изготовляются как цилиндрические диски диаметром 28 – 150 мм, высотой 5 – 60 мм (рис 1). На торцевой части дисков методом металлизации наносятся алюминиевые электроды толщиной 0.05-0.30 мм. Боковые поверхности диска покрывают глифталевой эмалью, что повышает пропускную способность при импульсах тока с крутым фронтом.

Рис. 1. Нелинейный резистор – варистор

Диаметр варистора ( точнее – площадь поперечного сечения ) определяет пропускную способность варистора по току, а его высота – параметры по напряжению.

При изготовлении ОПН то или иное количество варисторов соединяют последовательно в так называемую колонку. В зависимости от требуемых характеристик ОПН и его конструкции и имеющихся на предприятии варисторов ограничитель может состоять из одной колонки (состоящей даже из одного варистора) или из ряда колонок, соединённых между собой последовательно/ параллельно.

Для защиты электрооборудования от грозовых или коммутационных перенапряжений ОПН включается параллельно оборудованию (рис. 2 ).

Защитные свойства ОПН объясняются вольт–амперная характеристикой варистора.

Вольт – амперная характеристика конкретного варистора зависит от многих факторов, в том числе от технологии изготовления, рода напряжения – постоянного или переменного, частоты переменного напряжения, параметров импульсов тока, температуры и др.

Типовая вольт- амперная характеристика варистора с наибольшим длительно допустимым напряжением 0.4 кВ в линейном масштабе приведена на рис. 3.


Рис. 3. Вольт – амперная характеристика варистора

На вольт – амперной характеристике варистора можно выделить три характерных участка: 1) область малых токов; 2) средних токов и 3) больших токов. Область малых токов – это работа варистора под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение. В данной области сопротивление варистора весьма значительно. В силу неидеальности варистора сопротивление хотя и велико, но не бесконечно. поэтому через варистор протекает ток, называемый током проводимости. Этот ток мал – десятые доли миллиамперметра.

При возникновении грозовых или коммутационных импульсов перенапряжений в сети варистор переходит в режим средних токов. На границе первой и второй областей происходит перегиб вольт – амперной характеристики, при этом сопротивление варистора резко уменьшается (до долей Ома). Через варистор кратковременно протекает импульс тока, который может достигать десятков тысяч ампер. Варистор поглощает энергию импульса перенапряжения, выделяя затем её в виде тепла, рассеивая в окружающее пространство. Импульс перенапряжения сети “ срезается” (рис. 4).

В третьей области ( больших токов) сопротивление варистора снова резко увеличивается. Эта область для варистора является аварийной.

Что такое ограничитель перенапряжения?

Назначение

ОПН предназначены для защиты электроприборов и оборудования от воздействия высоковольтных импульсов напряжения. Благодаря простоте конструкции и надежности, они нашли широкое применение в области энергоснабжения. Данные устройства защиты пришли на смену устаревшим, весьма громоздким вентильным разрядникам. В отличие от предшественников, принцип действия ограничителя заключается не в использовании искровых промежутков. В качестве главного рабочего элемента в ОПН используются нелинейные резисторы, выполненные из материала, основу которого составляет окись цинка.

Устройство

Первичным и основным элементом, из чего состоит ограничитель перенапряжения, служит варистор, выполняющий роль нелинейного переменного резистора. Конструктивно ОПН состоят из варисторов, размещенных в корпусе, изготовленном из фарфора или высокопрочного полимера. Конструкция ограничителя выполнена с учетом условий, обеспечивающих взрывобезопасность, в случае возникновения токов короткого замыкания. В зависимости от назначения и места установки ОПН могут быть исполнены в различных вариантах. Для ограничителей, используемых для защиты линий электропередач и оборудования промышленных объектов, на крышке корпуса предусмотрен контактный болт для подключения к сети, в комплект ОПН входит изолированная от контакта с землей плита основания.

Устройства, предназначенные для защиты от пиковых импульсов напряжения электрохозяйства квартиры или дачного домика, очень компактны, имеют привлекательный дизайн, а также снабжены устройством для крепления на din-рейку. В зависимости от категории сложности, могут быть обустроены индикацией режимов работы и дистанционным управлением.

Устройство модульного ограничителя перенапряжения предоставлено на фото:

  1. Корпус
  2. Предохранитель
  3. Сменный варисторный модуль
  4. Указатель износа варисторного модуля
  5. Насечки на зажимах

Принцип работы

Принцип действия ОПН объясняется нелинейным характером вольтамперных характеристик (ВАХ) варисторов. Для их изготовления применяется материал, где находит применение окись цинка в смеси с оксидами других металлов. Благодаря составу данной смеси, колонка, собранная из варисторов является комбинацией параллельных и последовательных включений p-n переходов, что и обуславливает природу вольтамперных характеристик нелинейных резисторов ограничителей.

Когда характеристики напряжения в сети соответствуют номинальным значениям, ограничитель находится в режиме непроводящего состояния. Величина тока в варисторах имеет мизерные значения и объясняется емкостным характером. При появлении в сети импульса напряжения, величина которого может вызвать пробой изоляции электрооборудования, в цепи нелинейных резисторов ОПН, в соответствии с их вольтамперными характеристиками, будет иметь место возникновение значительного импульса тока. В конечном итоге это снижает величину перенапряжения до параметров безопасных для безаварийной эксплуатации оборудования. Когда напряжение в сети нормализуется, ОПН вновь возвращается в непроводящий режим.

Виды ОПН

Конструкции ОПН, предлагаемые производителями энергетикам весьма разнообразны, их различают по следующим признакам:

  1. Типу изоляции (фарфор или полимер).
  2. Конструктивному исполнению (одна или несколько колонок).
  3. Величине рабочего напряжения.
  4. Месту установки ограничителя.

Если говорить об ограничителях перенапряжения, устанавливаемых на DIN-рейку, то тут устройства первоначально разделяются на однофазные и трехфазные. Помимо этого модульные ОПН (они же УЗИП), делятся на три основных класса: B, C и D. Ограничители класса B устанавливаются на вводе в здание, C — непосредственно в распределительном щите квартиры либо дома, D — на отдельное оборудование, которое нужно защитить от помех, если с этим не справились ОПН класса B и C. Подробнее о модульных ограничителях перенапряжения вы можете узнать из видео:

Технические характеристики

  1. Максимально действующее напряжение. Под этим понятием необходимо понимать величину наибольшего значения величины напряжения, при котором ограничитель способен сохранять свою работоспособность без ограничения по времени.
  2. Номинальное напряжение, эквивалентно величине, воздействие которого ОПН способен выдерживать в течение 10 минут.
  3. Ток проводимости. Величина тока, в цепи нелинейных резисторов в период воздействия номинальных значений приложенного напряжения. Как правило, имеет мизерное значение.
  4. Номинальный разрядный ток. Параметр, определяющий классификацию ограничителя в условиях грозового режима.
  5. Расчетный ток коммутационного перенапряжения. Значение тока, определяющее классификацию при коммутационных перенапряжениях.
  6. Токовая пропускная способность. Величина эквивалентная классу разряда линии.
  7. Устойчивость к короткому замыканию. Категория способности ОПН противостоять токам короткого замыкания, сохраняя при этом целостность защитной оболочки.
Читайте также:  Схема подключения проходного выключателя на 3 точки: схема коммутации

Защита электрохозяйства административных зданий, многоквартирных домов и предприятий возлагается на соответствующие службы энергетических компаний, оградить свой дом от нежелательных последствий грозового разряда возложена на домовладельца. В настоящее время этот вопрос решается просто. В специализированных магазинах представлен широкий выбор ограничителей перенапряжения различной степени сложности и ценового диапазона.

На рисунке ниже показано подключение ОПН к однофазной сети и условное обозначение на схеме. Подключить ограничитель перенапряжения к домашней электросети не сложно, но выполнение этой операции лучше доверить специалисту, если вы не имеете опыта в электромонтажных работах.

Напоследок рекомендуем просмотреть видео, на котором наглядно рассматривается конструкция и принцип действия ограничителей перенапряжения нелинейных:

Вот мы и рассмотрели устройство, назначение и принцип действия ограничителя перенапряжения. Как вы видите, существует различные виды и конструктивные исполнения данных устройств, благодаря чему можно подобрать подходящий вариант для собственных условий применения.

Будет интересно прочитать:

Что такое ограничитель перенапряжения и как он работает?

Одним из наиболее опасных аварийных режимов в электрических сетях является импульсный скачек напряжения при атмосферных разрядах, перехлесте линий или коммутационных операциях. Эта величина значительно опережает нарастание импульсного тока и воздействует на изоляцию электрооборудования и других устройств, поэтому классические автоматы и другие защиты, реагирующие на изменение номинального тока, против нее не эффективны.

Значение перенапряжения может в разы превышать номинальную рабочую величину, поэтому такое явление подвергает опасности все оборудование и элементы сети. Для предотвращения значительных убытков и последующих затрат на восстановление в электроустановках используются ограничители перенапряжения (ОПН).

Устройство и принцип действия

Конструктивно ограничитель перенапряжения включает в себя полупроводниковый элемент с нелинейной величиной сопротивления. Как правило, в роли таких элементов выступают вилитовые диски, изготовленные на основе оксидов цинка с включением в из состав тех или иных примесей. Снаружи диски закрываются защитной рубашкой, а на концах имеют электрические выводы, один из которых подводится к защищаемой электрической сети, а второй заземляется. Пример частного варианта устройства ограничителя перенапряжения представлен на рисунке 1 ниже:

Рисунок 1: устройство ограничителя перенапряжения

Работа ОПН схожа с обычным варистором, отличительной особенностью ограничителя являются некоторые различия с характеристикой варистора в части проводимости и скорости нарастания. Принцип действия ограничителя перенапряжения заключается в его нелинейной вольт-амперной характеристике (ВАХ). Это означает, что при номинальном напряжении сопротивление варисторов достаточно большое и ток через них не протекает – его сопротивление изоляции соизмеримо с изоляцией кабелей, изоляторов и электрических приборов.

В рабочем режиме при возникновении грозовых разрядов или других высоковольтных импульсов сопротивление нелинейных резисторов внутри ограничителя резко снижается. Как правило, эта величина приближается к нулю или несоизмеримо меньше сопротивления сети и всех подключенных к ней приборов. Поэтому при коммутационных или грозовых перенапряжениях ток разряда протекает только через ограничитель перенапряжения на землю, чем и обеспечивается защита электрооборудования.

Пределы срабатывания ограничителя перенапряжений на разряды молний или другие импульсные перенапряжения определяются его ВАХ.

Рис. 2: вольтамперная характеристика ОПН

Как видите из рисунка 2, при работе ограничителя перенапряжения до 600В, протекающий через него ток будет равен нулю. Как только это значение пересечет отметку в 600В, сопротивление резко уменьшиться и протекающий ток увеличиться до сотен и тысяч ампер.

Здесь кривая характеристики представлена тремя участками:

  • 1 – область нулевых или сверхмалых токов;
  • 2 – область средних токовых нагрузок;
  • 3 – область максимального тока.

Применение

Ограничитель перенапряжения применяется для предотвращения нарастания перенапряжения на электрическом оборудовании с последующим переводом импульса разряда на землю.

Рис. 3: пример использования ОПН

Широкое применение нелинейных ограничителей распространено в линиях электропередач, где они выступают в роли молниезащиты, а сами провода являются молниеприемниками. В промышленных целях ограничители перенапряжения используются для защиты различных электрических аппаратов и персонала, к примеру, на тяговых и трансформаторных подстанциях, распределительных устройствах и т.д. В бытовых устройствах ОПН применяются для установки в электрических щитках на вводе в здание или для защиты какого-либо ценного оборудования.

Виды ОПН

В связи с большим спектром решаемых задач ограничители перенапряжения подразделяются на несколько видов, которые отличаются по таким параметрам:

  • Класс напряжения – рабочая величина, на которую рассчитан ограничитель, разделяется на устройства до 1кВ и выше, как правило, номинал напряжения соответствует стандартному значению электрических параметров сети (6, 10, 35 кВ).
  • Материал рубашки – определяет тип изоляции наружного слоя, наиболее часто используются фарфоровые или полимерные модели.
  • Класс защищенности – определяет возможность установки или на открытой части, или только внутри помещения.
  • Количеству элементов или фаз – число ограничителей перенапряжения зависит от числа защищаемых фаз и величины питающего их напряжения.

Так для каждой из фаз в электроустановке может устанавливаться отдельная колонка или одна для всех. Также следует отметить, что в электроустановках на 110 кВ и более ОПН для одной фазы может собираться из нескольких однотипных элементов, к примеру, из трех на 35 кВ.

В зависимости от причин возникновения перенапряжения в сети устройство защиты должно выстраиваться в соответствии с требованиями стандартов:

  • ГОСТ Р 50571.18-2000 – от возможных перенапряжений в низковольтных сетях при замыканиях по высокой стороне.
  • ГОСТ Р 50571.19-2000 – от скачков, образованных воздействием молнии и возникающих в результате переключения электроустановок.
  • ГОСТ Р 50571.20-2000 – от перенапряжений генерируемых электромагнитными воздействиями.

Комбинация нескольких видов позволяет выстраивать многофункциональные или ступенчатые ограничители.

Фарфоровые

Достаточно распространенным вариантом являются ограничители коммутационных перенапряжений с фарфоровым корпусом. Такие модели отличаются своими эксплуатационными параметрами, так как керамика невосприимчива к воздействию солнечной радиации, а находящийся внутри вентильный разрядник практически не зависит от температуры внешней среды.

Также весомым преимуществом этих ограничителей является большая механическая прочность на сжатие и разрыв, благодаря чему их можно использовать и в качестве опорной конструкции. Но фарфоровые ОПН характеризуются сравнительно большим весом, а также представляют значительную угрозу в случае разрыва, так как осколки фарфора поражают близлежащие здания и могут травмировать персонал.

Полимерные

С развитием химической отрасли и распространением полимеров в качестве диэлектриков они значительно вытеснили фарфоровые ограничители. Полимерные ОПН представляют собой устройства с рубашкой из каучука, винила, фторопласта или других подобных материалов.

Полимерные ограничители куда боле устойчивы к воздействию влаги, отличаются меньшим весом и большей взрывобезопасностью, так как в случае разрушения корпуса избыточным давлением внутри колонки, рубашка повреждается по линии разлома, но не разлетается острыми осколками. Значительным преимуществом полимерных моделей является их устойчивость к динамическим нагрузкам.

К недостаткам полимерных ОПН относится способность к накоплению пыли и прочих засорителей на поверхности диэлектрика, которые со временем приводят к повышению пропускной способности, увеличению тока утечки и пробою изоляции. Также полимеры боятся солнечной радиации и температурных колебаний в окружающей среде.

Одноколонковые

Такие ограничители перенапряжения представляют собой один конструктивный элемент с нелинейным сопротивлением. Число полупроводниковых дисков в них набирается в соответствии с категорией защищаемой электроустановки. В зависимости от количества и типа осаживающейся на поверхности пыли и засорителей, одноколонковые ОПН подразделяются по классам от II до IV согласно градуировке ГОСТ 9920.

Многоколонковые

В отличии от предыдущих устройств борьбы с коммутационными перенапряжениями, эти средства защиты высоковольтного оборудования имеют несколько колонок, модулей или блоков, объединяемых в одну систему. Данный вид ОПН характеризуется большей надежностью по отношению к защищаемым объектам, так как способен реагировать и на одиночные, и на дифференциальные перенапряжения.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Обслуживание и диагностика ОПН

В процессе эксплуатации ограничители перенапряжения не являются одноразовым элементом. Поэтому могут многократно производить операции перевода импульсного разряда на заземляющую шину автоматически. Из-за особенностей протекания и величины перенапряжения ОПН может утрачивать заводские параметры, снижать эффективность работы до полного выхода со строя. Для предотвращения подобных ситуаций они подвергаются периодической проверке в процессе эксплуатации, которая регламентируется п.2.8.7 ПТЭЭП. При этом проверяется:

  • Сопротивление – не менее раза в 6 лет, измеряется при помощи мегаомметра.
  • Ток проводимости – проверяется только при условии снижения предыдущего параметра.
  • Пробивное напряжение и герметичность проверяются только после заводского ремонта или при приемке в эксплуатацию на заводе. Самостоятельно электроснабжающими и эксплуатирующими организациями такие меры диагностики для ограничителей не производятся.
  • Тепловизионные измерения должны выполняться в соответствии с регламентом изготовителя или местными планово-предупредительными ремонтами.

Также в процессе эксплуатации может выполняться внешний осмотр устройства на наличие подгаров, сколов, загрязнения или других дефектов в изоляции.

Область применения и принцип работы ограничителей перенапряжения (ОПН)

Область применения ограничителей напряжения

Ограничители перенапряжения (ОПН) – это высоковольтные аппараты, широко применяемые в промышленности. Область их применения распространяется на сети среднего и высокого классов напряжения переменного тока промышленной частоты. ОПН используются для защиты от повышенного сетевого и атмосферного напряжения

Читайте также:  Лампа ДРЛ: расшифровка, подключение через дроссель, светодиодные аналоги

ОПН широко используются для защиты:

  • двигателей
  • трансформаторов
  • подстанций подвижного состава
  • компенсаторов напряжения
  • различных электроустановок и электрических машин

ОПН для защиты трансформатора

Конструкция ограничителя перенапряжения

Основным элементом ОПН является варистор с нелинейным сопротивлением. При нормальном напряжении сопротивление варистора высокое, поэтому он не проводит электрический ток . В случае скачков напряжения варистор мгновенно переключается в проводящий режим, защищая электрооборудование от вы сокого напряжения. В конструкцию ОПН заложены одна или несколько последовательных/ парралельных цепочек варисторов.

Варисторы в основном состоят из окиси цинка в оболочке из глифталевой эмали для улучшения проводимости. В процессе изготовления в оксид цинка добавляют примеси других металлов образуя p-n переходы, которые обеспечивают нелинейность вольт-ампеной характеристики варистора.

Принцип действия ОПН

Защитная функция ограничителя перенапряжения состоит в том, что при нормальном напряжении, ограничитель перенапряжений опн пропускает минимальный ток в доли миллиампера. В случае возникновения импульсных скачков напряжения, ток через ограничитель резко возрастает, ограничивая тем самым максимальное напряжение, приложенное к электроустановке .

Принцип работы ОПН можно увидеть из вольт-амперной характеристики ограничителя.

На 1-м участке характеристики ОПН работает при нормальном напряжении, на 2-м участке ограничитель переходит в проводящее состояние при возрастании приложенного напряжения . 3-й участок является аварийным и характеризуется резким возрастанием сопротивление ОПН.

Виды ограничителей перенапряжения:

Для промышленного применения чаще всего используются два вида ОПН:

ОГРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЙ НЕЛИНЕЙНЫЕ ПОЛИМЕРНЫЕ (ОПНп)

В данных аппаратах колонки варисторов расположены в полимерном корпусе из высокомолекулярного каучука. К недостаткам ОПНп относят небольшую механическую прочность и влияние перепадов температур на сопротивление изоляции.

Преимущества полимерных ограничителей перенапряжения:

  1. Высокая взрывобезопасность
  2. Высокая герметичность
  3. Небольшой вес
  4. Простота монтажа
  5. Возможность работы в загрязненных условиях
  6. Хорошие разрядные характеристики

ОГРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЙ НЕЛИНЕЙНЫЕ ФАРФОРОВЫЕ (ОПН)

Фарфоровые ОПН состоят из колонки варисторов, прижатой к боковой поверхности стеклопластиковой трубы, внутри фарфоровой покрышки. Фарфоровые ОПН отлично переносят перепады температур и обладают прекрасными механическими харктеристиками. В последнее время фарфоровые ОПН стали заменять на полимерные из-за ряда недостатков.

Недостатки фарфоровых ограничителей перенапряжения:

  1. Высокая масса и габариты
  2. Взрывоопасность
  3. Низкая герметичность из-за низких эксплуатационных характеристик резиновых уплотнителей
  4. Худшие в сравнении с ОПНп тепловые характеристики

На данном ресурсе размещаются новости альтернативной и возобновляемой энергетики в мире. Освещаются основные события более чем в 200-х странах мира, в том числе в России, Украине и других странах советского пространства.

Возобновляемая энергетика – совокупность способов использования неисчерпаемых природных ресурсов для получения электроэнергии или других форм энергии. Большинство возобновляемых источников являются альтернативными, то есть они не связаны с использованием топливных полезных ископаемых.

Больше всего на сайте рассматривается новости ветряной и солнечной энергии, как наиболее развитые и перспективные способы использования возобновляемой энергии в мире. Также освящаются события гидроэнергетики, геотермальной энергетики, энергии океана, рассматриваются новые способы получения возобновляемой энергии.

Но затрагиваются и тесно связанные вопросы: развитие электромобилей, предотвращение загрязнение планеты, перенаселение Земли. Атомной энергетике уделено особое внимание, как наиболее спорному способу получения электроэнергии. Одни считают её полностью безопасным способом генерации энергии, другие – агитируют за прекращение работы АЭС. Наиболее важные статьи, описывающие общее состояние отрасли, структурированы в разделы, которые находятся в левом меню сайта.

Авторы сайта убеждены в том, что альтернативные и возобновляемые источники энергии станут решением двух главных проблем человечества. Во-первых, они станут источниками энергии будущего, когда топливные полезные ископаемые будут исчерпаны. Во-вторых, остановят выбросы углекислого газа и глобальное потепление.

Разрядники

Разрядник – это пассивное электрическое устройство, у которого при определенном значении приложенного напряжения пробивается искровой промежуток и ограничивает перенапряжения в установке.

1. Разрядник, его назначение, принцип действия

Разрядники представляют собой защитные аппараты. Они предназначены для защиты изоляции электрооборудования от перенапряжений.
Разрядник состоит из двух электродов и дугогасительного устройства.

Один из электродов закрепляют на защищаемой цепи, второй электрод заземляют. Пространство между этими двумя электродами называется искровым промежутком. При определенном значении напряжения между электродами искровой промежуток пробивается и снимает перенапряжение с защищаемого участка цепи.

После пробоя импульсом искровой промежуток становится достаточно ионизированным, чтобы фазные напряжения нормального режима могли пробиться, в связи с этим возникает короткое замыкание. Задача дугогасительного устройства — в наиболее короткие сроки устранить это до того, как сработают устройства защиты.

Принцип действия разрядников. В конструкции разрядников предусмотрен воздушный зазор в перемычке, который соединяет фазы линии электропередач и заземляющий контур. При номинальной величине напряжения цепь в перемычке разорвана. В случае грозового разряда в результате перенапряжения в ЛЭП происходит пробой воздушного зазора, происходит замыкание цепи между фазой и землей и импульс высокого напряжения напрямую уходит в землю.

2. Типы разрядников

Различают такие типы разрядников:

  • Воздушный
  • Газовый
  • Вентильный
  • Магнитовентильный

3. Воздушный разрядник закрытого и открытого типа (трубчатый разрядник)

Имеет вид полихлорвиниловой трубки, которая предназначена для гашения дуги. На каждом конце разрядника имеется по одному электроду (рис.1). К одному электроду подведено заземление, а другой установлен на незначительном расстоянии от защищаемого участка.

Рисунок 1 – Структурная схема воздушного разрядника

4. Газовый разрядник

Газовые разрядники представляют собой компоненты, заполненные инертным газом (рис.2). Корпус разрядника изготовлен в виде керамической трубки, концы которой закрыты металлическими пластинами и выступают в роли электродов.

Рисунок 2 – Структурная схема газового разрядника

5 Вентильный разрядник

Состоит из двух основных частей: многократный искровой промежуток и рабочий резистор, состоящий из последовательно набранных вилитовых дисков (рис.3). Оба этих основных элемента соединены между собой последовательно.

Рисунок 3 – Структурная схема вентильного разрядника

6. Магнитовентильный разрядник (рвмг)

В состав магнитовентильного разрядника входят несколько блоков, соединенных последовательно (рис.4). В каждом блоке имеются единичные искровые промежутки, которые последовательно соединены, а также постоянные магниты. Все элементы блока размещаются в цилиндре из фарфора.

Рисунок 4 – Структурная схема магнитовентильного разрядника

7. Ограничитель перенапряжений нелинейный (ОПН)

В этом разряднике отсутствуют искровые промежутки(рис.5). Конструкция активной части ограничителя включает в себя последовательный набор варисторов.

Рисунок 5 – Структурная схема ограничителя перенапряжений

8. Выбор разрядников

Основные параметры разрядников: класс пропускной способности, наиболее длительное допустимое рабочее напряжение, уровни остающихся напряжений при коммутационных и грозовых импульсах, номинальное напряжение, величина тока срабатывания противовзрывного устройства, номинальный разрядный ток, длина пути утечки внешней изоляции.

Выбор разрядников производится исходя из назначения, конструктивного исполнения, требуемого уровня ограничения перенапряжений, схемы сети и ее параметров.

9. Технические характеристики разрядников

Выделяют такие основные технические характеристики разрядников:

  • Класс напряжения цепи;
  • Наибольшее допустимое напряжение;
  • Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождем;
  • Импульсное пробивное напряжение при предразрядном времени от 2 до 20 мкс;
  • Остающееся напряжение при волне 8 мкс;
  • Ток утечки;
  • Токовая пропускная способность;
  • Длина пути утечки внешней изоляции;
  • Допустимое натяжение проводов;
  • Высота;
  • Масса ограничителя.

10. Обозначения разрядников

Таблица 1 – Обозначения разрядников на схемах

НаименованиеОбозначение
Разрядник. Общее обозначение.
Разрядник трубчатый
Разрядники вентильный и магнитовентильный
Разрядник шаровой
Разрядник роговой
Разрядник угольный
Разрядник электрохимический

11. Разрядники 6 КВ, 10 КВ, 35кВ, 110 кВ, 220 кВ

Основные характеристики разрядников 6-220 кВ приведены в таблицах 2 и 3.

Таблица 2 – Технические характеристики разрядников 6 кВ, 10 кВ

ПараметрЕдиница измеренияРВО-6 НРВО-10 Н
Класс напряжения сетикВ610
Наибольшее допустимое напряжениекВ7,512,7
Пробивное напряжение при частоте 50 Гц
в сухом состоянии и под дождём:
не менеекВ1626
не болеекВ1930,5
Импульсное пробивное напряжение при
предразрядном времени от 2 до 20 мкс, не более
кВ3248
Остающееся напряжение при волне 8 мкс, не более:
с амплитудой тока 3000АкВ2543
с амплитудой тока 5000АкВ2745
Ток утечки, не болеемкА66
Токовая пропускная способность:
20 импульсов тока волной 16/40 мкскА5,05,0
20 импульсов тока прямоугольной волной длительностью 2000 мксА7575
Длина пути утечки внешней изоляции, не менеесм1826
Допустимое натяжение проводов, не менееН300300
Высота, не болеемм294411
Масса, не болеекг3,14,2

Таблица 3 – Технические характеристики разрядников 35кВ, 110 кВ, 220 кВ

Инструкция по эксплуатации ограничителей перенапряжения (ОПН)

СЛУЖБА ЭКСПЛУАТАЦИИ И РЕМОНТА ПС И ЛЭП 35-110 KB

ТИПОВАЯ ИНСТРУКЦИЯ
ПО ЭКСПЛУАТАЦИИ ОГРАНИЧИТЕЛЕЙ
ПЕРЕНАПРЯЖЕНИЯ НЕЛИНЕЙНЫХ
6 -110 KB

СОДЕРЖАНИЕ
1. Область применения
2. Общие сведения

3.Устройство и принцип действия ОПН 6-110 кВ
3.1 Устройство и принцип действия ОПН фирмы «ABB».
3.2 Устройство и принцип действия ОПН фирмы «Таврида Электрик»
3.3 Устройство и принцип действия ОПН фирмы «Raychem»

4. Монтаж ОПН 6-110 кВ

  1. Общие требования
  2. Монтаж ОПН фирмы «ABB»
  3. Монтаж ОПН фирмы «Таврида электрик»
  4. Монтаж ОПН фирмы «Raychem»

5 Техническое обслуживание ОПН 6-110 кВ
Приложения
Знание настоящей инструкции обязательно для:
– оперативного, оперативно-производственного персонала электрических сетей;
– производственного персонала групп подстанций, распредсетей, ЦРО
служб подстанций и распредсетей, электромонтеров по обслуживанию
ВЛ 6-110 кВ;
– инженерно-технического персонала СПС, СРС, СЛ,СЛИП.

1. ОБЛАСТЬ ПРИМЕНЕНИЯ.

Требования данной инструкции распространяется на ограничители перенапряжения нелинейные (далее – ОПН) 6-110 кВ, изготовленные в полимерном
корпусе производства фирм: «Raychem», «Таврида Электрик», «ABB» и др., находящиеся в эксплуатации на объектах электроэнергетической системы.

2. ОБЩИЕ СВЕДЕНИЯ.

ОПН на сегодняшний день являются одним из эффективных средств защиты оборудования электрических сетей. Данные аппараты обладают достаточно высокими
эксплуатационными свойствами и надежностью.
Нелинейные ограничители перенапряжений предназначены для использования в качестве основных средств зашиты электрооборудования станций и сетей среднего и высокого классов напряжения переменного тока промышленной частоты от коммутационных и грозовых перенапряжений. При их разработке были использованы последние технологические достижения и опыт эксплуатации ОПН в отечественной и зарубежной практике. Ограничители рекомендуется применять вместо вентильных разрядников соответствующих классов напряжения при проектировании, эксплуатации, техническом перевооружении и реконструкции электроустановок.
ОПН 6-110 кВ с полимерной изоляцией, по сравнению с вентильными разрядниками, обладают целым рядом преимуществ:

  1. варисторы, применяемые в ОПН, обладают высокой стабильностью, которая
    не изменяется в процессе длительной эксплуатации;
  2. большое быстродействие срабатывания ОПН при коммутационных и
    грозовых перенапряжениях;
  3. отличные пиковые характеристики ОПН в широком диапазоне рабочей
    температуры;
  4. применение варисторов в одно колонковом исполнении позволяет
    обеспечить особенно глубокое ограничение напряжений и, соответственно, более
    высокую надежность работы оборудования и улучшение параметров сети;
  5. уменьшение габарита и веса ОПН в 10 — 20 раз позволяет установить их
    непосредственно вблизи защищаемого оборудования;
  6. высокая механическая прочность и малая масса ОПН позволяет
    устанавливать их на ВЛ 6-110 кВ без усиления конструкции опор;
  7. ОПН в полимерном корпусе не требуют специального обслуживания, не
    повреждаются при транспортировке и хранении;
  8. малые массо-габариты ОПН позволяют легко выполнять их монтаж при
    минимальном использовании техники.
Читайте также:  Электрический кабель: расшифровка маркировки, назначение, плюсы и минусы

Под рабочим напряжением через ОПН протекает ток величиной доли миллиампер. Ток носит емкостной характер, вследствие чего в ОПН не выделяется активная мощность, и он может неограниченно долго находиться под рабочим напряжением. В результате ОПН не требует обслуживания и контроля параметров в процессе эксплуатации. Повышение напряжения, при появлении импульса перенапряжения, вызывает снижение активного сопротивления резисторов ОПН. Ток через ОПН возрастает до сотен ампер при появлении коммутационных перенапряжений и до тысяч ампер при воздействии грозовых перенапряжений. Резисторы ограничителя переходят в проводящее состояние и ограничивают дальнейшее нарастание перенапряжения до уровня, безопасного для изоляции защищаемого электрооборудования. Когда перенапряжение снижается, ограничитель вновь возвращается в непроводящее состояние.

Графики изменения тока и напряжения на ОПН при повышении воздействующего напряжения.

Высоколинейные резисторы объемного типа (варисторы), применяемые в ОПН, выполнены из оксидно-цинковой или металлооксидной керамики – нелинейного материала, получаемого в результате высокотемпературного обжига (до 1300 °С) специальной смеси. Смесь состоит из окиси цинка и некоторого количества оксида другого металла, например висмута, сурьмы, кобальта, марганца и т.п. Масса основной добавки составляет менее 4% массы оксида цинка. Коэффициент не линейности оксидно–цинковой керамики одного и того же образца составляет 0,02 – 0,06 и зависит от сочетания добавок к оксиду цинка и температуры обжига материала. Зависимость между напряжением, приложенным к образцу такого материала, и током в нем определяется общей для рассматриваемых материалов формулой. Коэффициент не линейности растет с увеличением значения тока, а при больших напряжениях начинает увеличиваться активная .масса составляющего тока через оксидно-цинковый нелинейный рабочий резистор (НРР).
Вольт-амперная характеристика НРР из металлооксидной керамики зависит от температуры окружающей среды: при повышении температуры остаточное напряжение уменьшается, температурный коэффициент тока и коэффициент не линейности увеличиваются. Уменьшение остаточного напряжения при коротких импульсах несколько меньше, чем при длинных, например, отношение остаточного напряжения при длительности воздействия, равной одной микросекунде, к остаточному напряжению при длительности воздействия, равной восьми микросекундам, составляет 1,07.
Параметры материала НРР в значительной степени определяют срок службы ОПН. Основное значение имеют градиент напряжения, температурный коэффициент тока, температура окружающей среды, условия теплоотдачи, приложенное напряжение. В процессе старения возрастает активная составляющая
тока и соответственно активная мощность. НРР выбирается из того или иного числа единичных дисковых резисторов, соединенных последовательно или последовательно-параллельно. Надежный электрический контакт между ними обеспечивается металлизацией их торцевых поверхностей и контактным нажатием.
При последовательном соединении единичных высоко нелинейных резисторов напряжение между ними распределяется очень неравномерно, что обуславливается не только емкостным распределением напряжения, но и различной электрической проводимостью отдельных резисторов, градиентом напряжения при заданном токе, тангенсом угла дельта диэлектрических потерь резисторов.
Градиент напряжения при гарантированной пропускной способности резистора при импульсе тока с максимальным значением 70 А и длительностью 3/8 мкс составляет 1,45-1,8 кВ/см, а тангенс диэлектрических потерь равен (или меньше) 0,09 увеличение числа последовательно соединенных резисторов уменьшает неравномерность распределения напряжения. Неравномерность проявляется в случае, когда заданное напряжение (градиент) приложено к небольшому числу единичных резисторов (ЕР); если же оно приложено к числу ЕР, в десять раз большему, то оно соответственно и распределяется на большее число объектов с уменьшением напряжения, приходящегося на каждый ЕР, с учетом активных утечек которого неравномерность снижается. Выравнивание его по высоте аппарата достигается посредством трубчатого экранного кольца, закрепляемого на верхней крышке элемента, что существенно облегчает работу НРР.
Диски из оксидно – цинковой керамики помещается в специальную термоусаживаемую трубку ( трубка полиэтиленовая радиационно – модифицированная), которая при нагревании вместе с дисками до температуры 170-180°С плотно облегает колонку из дисков, создавая продольное и поперечное давление. Продольное давление обеспечивает электрический контакт между отдельными дисками, а поперечное создает из разрозненных дисков одно конструктивное целое — колонку.
Пропускная способность НРР определяется площадью поперечного сечения ЕР и градиентом напряжения. Увеличение ее достигается увеличением диаметра дисков. Толщина диска ЕР определяется специальными расчетами, где решающее значение имеет обеспечение наибольшего теплоотвода с целью предотвращения прогорания материала диска по цепи протекания сопровождающего тока. Этот размер НРР определяется при разработке ОПН.

3. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ОПН 6 – 110 КВ.

3.1. Устройство и принцип действия ОПН фирмы “АВВ”.
ОПН фирмы «ABB» в полимерном корпусе могут состоять из одного или нескольких модулей, каждый из которых содержит одну колонку варисторов. Варисторы не обладают “кумулятивным” эффектом, т.е. их вольт-амперная характеристика не зависит от числа срабатываний ОПН. Силиконовая покрышка наносится на активную часть методом непосредственного вакуумного литья в специальной холдинговой машине. Фланцы соединены друг с другом двумя или более усиливающими элементами из стекловолокна, что придает ОПН высокие механические характеристики. Благодаря тому, что силиконовая изоляция наносится непосредственно на вариаторы, внутри нет воздуха и, как следствие, отсутствуют внутренние частичные разряды. Кроме того, улучшаются условия охлаждения варисторов, что улучшает энергопоглащающую способность ОПН.
ОПК фирмы «ABB» состоит из внешнего изолятора, выполненного из негаллогенированной силиконовой резины с концевыми фланцами и выводами, выполненными из нержавеющей стали, алюминия или меди. Внутренняя часть ОПН состоит из металлооксидных варисторов, стальных прокладок, алюминиевыхкомпонентов, стекловолоконных стяжек и арамидных волокон. Металлоксидные варисторы представляют собой агломератные «таблетки», состоящие в основном из ZnO (90%) и др. веществ (более 1%): Bi2O3, Sb2O3, NiO, Cr2O3. Металлоксидные варисторы покрыты слоем тонкого стекла ( Конструкция ОПН/ TEL

3.3 Устройство и принцип действия ОПН фирмы «Raychem»
В корпус из трекингостойкого полимера, выпускаемого по специальной технологии, помещены металлооксидные варисторы, обеспечивающие высокую энергопоглощающую способность. Подключение ОПН к сети осуществляется при помощи электродов. Волоконно-армированная структура придает ОПН дополнительную механическую прочность.

Конструкция ОПН фирмы «Raychem»

1. Металлооксидные варисторы
2. Электроды
3. Волоконно-армированная композитная структура
4. Корпус из трекингостойкого полимера

4. МОНТАЖ ОПН 6-110 KB

4.1 Общие требования

Монтаж ОПН 6-110 кВ должен производится в строгом соответствии с требованиями инструкций завода-изготовителя и указаний ГКД 34.35.512-2002. Средства защиты от перенапряжений в электроустановках 6-750 кВ. Инструкция по монтажу и эксплуатации.
После окончания монтажа проводятся приемо-сдаточные испытания ОПН в объеме согласно требованиям инструкции завода-изготовителя и ГКД 34.35.512-2002.
Перед монтажом все элементы ОПН необходимо тщательно осмотреть, причем особое внимание следует обращать на следующее:

  1. поверхности покрышек, в том числе торцы, примыкающие к фланцам, не
    должны иметь трещин, каких-либо следов удара;
  2. состояние внутренних деталей элемента проверяется слабым
    встряхиванием при проворачивании его в разные стороны под углом 20-30° от
    вертикальной оси. Наличие при этом шумов или позваниваний свидетельствует о
    повреждении внутренних деталей элемента;
  3. перед монтажом, элементы ОПН должны быть испытаны в соответствии с
    инструкцией завода-изготовителя, требованиями ПУЭ, РД 34.20.302, указаниями
    ГКД 34.35.512-2002. При монтаже используются только те элементы ОПН,
    результаты испытаний которых удовлетворяют требованиям вышеперечисленных
    НД;
  4. монтаж многоэлементных ОПН (начиная от земли) следует выполнять,
    строго соблюдая указания завода-изготовителя о размещении порядковых номеров
    элементов. Замена одних элементов другими или изменение их взаимного
    расположения в ОПН, по сравнению с предписанным заводом-изготовителем не
    допускается, за исключением случаев, оговоренных в заводских документах по
    техническому обслуживанию и эксплуатации.

После окончания монтажа все наружные металлические детали аппарата, кроме паспортных щитков, необходимо окрасит влагостойкой краской или эмалью. ОПН устанавливаются в ОРУ, ЗРУ на специальных конструкциях – стойках или на огражденных фундаментах высотой не менее 300 мм от уровня планировки ПС с учетом требований защиты от ливневых вод и высоты снежного покрова. ОПН, у которых нижняя кромка фарфорового кожуха расположена над уровнем планировки ПС на высоте не менее 2500 мм, разрешается устанавливать без постоянных ограждений. Расстояние в свету между фазами ОПН или от ОПН до заземленных или находящихся под напряжением других элементов ПС должны быть не менее значений заказанных в табл. 1.

Для ОПН-110 кВ наименьшие расстояния в свету от токоведущих частей до различных элементов СРУ должны быть:
– от токоведущих частей, от элементов оборудования и изоляции, находящихся под напряжением, до заземленных постоянных внутренних и наружных ограждений высотой не менее 2000 мм, а также стационарных межячейковых экранов и противопожарных перегородок – 600 мм;

Таблица 1 Наименьшие допустимые расстояния в свету между ОПН и токоведущими и заземленными частями оборудования ПС, а также между ОПН и постоянными ограждениями

Изоляционные расстояния, мм, для номинального напряжения, кВ

Ссылка на основную публикацию
Расстояние