Мощные светодиоды: одно- и многокристальные, материал, проводники и питание

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Светодиод состоит из нескольких частей:

  • анод, по которому подается положительная полуволна на кристалл;
  • катод, по которому подается отрицательная полуволна на кристалл;
  • отражатель;
  • кристалл полупроводника;
  • рассеиватель.

Эти элементы есть в любом светодиоде, вне зависимости от его модели.

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

  • ширина запрещенной зоны должна быть близка к энергии кванта света;
  • полупроводниковый кристалл должен иметь минимум дефектов.

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.

По типу исполнения выделяют:

    Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света. Dip светодиоды

  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.
    • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам. Smd

    • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров. Cob
    • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
    • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий. Filament

    • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
    • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.

    Светодиоды могут быть:

    • мигающими – используются для привлечения внимания;
    • многоцветными мигающими;
    • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
    • RGB;
    • монохромными.

    Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.

    Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).

    По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.

    Полярность светодиодов

    При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

    Полярность моно определить несколькими способами:

    • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
    • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
    • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
    • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

    Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

    Расчет сопротивления для светодиода

    Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.

    Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.

    Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.

    Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.

    Когда нужно использовать токоограничивающий резистор:

    • когда вопрос эффективности схемы не является основным – например, индикация;
    • лабораторные исследования.

    В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.

    Онлайн – сервисы и калькуляторы для расчета резистора:

    Рынок светодиодов многолик и разнообразен. Прогресс на месте тоже не стоит. Даже специалисты подчас затрудняются с первого раза определить тип и мощность светодиода – чего уж говорить о новичках. С каждым годом производителей становится все больше, каждый из них придумывает свою маркировку и подразделение по типам. Эта статья, возможно, поможет вам разобраться в самых распостраненных типах светодиодов.

    – У вас есть светодиоды на сто ватт ?
    – Нет, таких светодиодов не бывает.
    – Ты, лошара, торгуешь светодиодами и не разбираешься !

    Разговор в радиомагазине

    Маломощный (индикаторный) светодиод

    Самый распостраненный вид светодиодов, встречающийся повсеместно. Диаметр может колебаться от 2 до 20 мм. Слово “индикаторный” к нынешним, даже маломощным, светодиодам можно применить лишь достаточно условно – иные могут запросто засветить вам “зайчика” в глаз. Однако и само слово “индикатор” тоже со временем приняло уродливые формы. Например, мне пришлось заклеить изолентой индикатор сети нового музыкального центра – а то ночью можно читать под ним было, но вот заснуть – увы 🙂
    Типовые параметры белого светодиода : ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт. Чтобы заменить один мощный 1 Вт светодиод, индикаторных понадобится 20-25 штук.
    Также к маломощным относят некоторые типы светодиодов поверхностного монтажа – SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа : SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность примерно 0,06 Вт. А вот второй – три таких кристалла, поэтому его нельзя уже называть светодиодом – это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это – сборки. Их общая мощность, соответственно, около 0,2 Вт. На этом рассмотрение маломощных диодов можно прекратить – про них и так уже достаточно написано.

    Мощный светодиод


    В этой сфере царит изрядный винегрет. Попробуем условно разбить его на буквально две категории. Первая – это светодиоды производства американской фирмы CREE. Эта контора, безусловно, заслужила право быть отдельной категорией. Да, да, я знаю, что есть и суперпроизводитель Nichia – родоначальник белого светодиода, есть Osram и еще изрядное количество брэндов. Все они выпускают весьма неплохие мощные светодиоды, однако Кри – это Кри. Есть всякие вкусные шипучки, а есть Кока-Кола 😉 Обсуждать тут особенно нечего, светодиоды Cree весьма известны, также известны их характеристики. Поэтому мы их и не будем обсуждать. Отметим только, что светодиоды серий XRE, XPG, XML – это действительно светодиоды. MCE,MX, MPL – многокристальные сборки. К ним применимы основные принципы, которые мы рассмотрим чуть ниже.
    Вторая категория – светодиоды noname, а именно – китайского производства. Ни для кого уже не секрет, что за последние пару лет китайцы сильно шагнули вперед в теме полупроводникового освещения. Поэтому покупка китайского мощного светодиода уже не такая лотерея, как два или три года назад. Наличие ebay.com и множества интернет-магазинов сделало китайские светодиоды весьма доступными.
    При всех достоинствах “брэндов”, у них есть некоторые существенные недостатки. Первый и главный – цена. Китайский светодиод в среднем в два-три раза дешевле своего заокеанского собрата. Второй – гораздо более широкий ассортимент. Особенно это касается светодиодов с различной длиной волны и цветовой температурой.
    Третий недостаток, если его можно считать таковым – тип корпуса. Фирма Cree изначально ориентировалась на средних и крупных производителей светодиодной техники. Корпус светодиодов рассчитан на автоматический монтаж, что позволяет производить светодиодные светильники сотнями и тысячами. Но если вы еще не доросли до таких объемов или хотите использовать светодиоды в своих домашних поделках – увы, вас ждут сложности. Светодиоды Cree позволяют использовать ручной монтаж с большими оговорками, ни о какой производительности труда говорить не приходится, да и отвод тепла – серьезная проблема. Единственный выход – приобретение светодиодов на алюминиевой печатной плате, что отнюдь не удешевляет проект.
    Львиная доля китайских светодиодов изготавливается в так называемом корпусе “эмиттер”. Он несколько архаичен по нынешним временам, но при этом весьма удобен для ручного монтажа, эффективно отводит тепло и позволяет использовать множество типов оптики. Большая медная подложка прощает мелкие огрехи монтажа, линзу из поликарбоната легко очищать от загрязнений в отличии от “фирменной” силиконовой, большие вывода не создают сложностей при пайке.
    Самый главный минус китайского светодиода по сравнению с брэндом – скудная техническая документация и отсутствие какого-либо стандарта. Ну и известное головотяпство китайцев. К примеру, у некоторых китайских производителей минус – это плюс. Не поленитесь проверить полярность светодиода, если заказываете первый раз. Давайте попробуем разобраться – можно ли на вид определить качество светодиода и его мощность.
    Первое, и самое главное – правильно понимать, что такое мощность светодиода. Существует распостраненное заблуждение, что бывают одноваттные, трехваттные и т.д. светодиоды. Это не совсем так. У каждого светодиода существует понятие – максимальный рабочий ток. Вот он и определяет максимальную мощность светодиода. При этом его фактическая мощность зависит от тока, на который вы его включите. Для типового китайского “эмиттера” максимальный рабочий ток – 700 мА. Это означает, что его максимальная мощность равна произведению напряжения на ток, то есть примерно 3,7 В*0,7А=2,6 ватта. Фактически при продаже часто округляют до трех ватт. К тому же у недорогих кристаллов падение напряжения выше, и на токе 0,7А может достигать 4-4,5 вольт, а это уже полноценные три ватта. Чем меньше падение напряжения на токе 700 мА, тем экономичнее светодиод.

    Для того, чтобы светодиод выдержал максимальный ток, необходимо соблюдение следующих условий :

    1. Кристалл светодиода не должен содержать дефектов. Другими словами, очень важен производитель светодиодного чипа. 90% китайских производителей закупают чипы в Корее и на Тайване, иногда даже у Cree и других брэндов. Однако китайский светодиод с “брэндовым” чипом – сомнительное приобретение, так как цена ненамного ниже оригинала, а качество все-же не то. Последние два года китайцы начали выращивать свои кристаллы, но пока их качество не на уровне. Основная проблема – их трудно определить, остается уповать на честность поставщика.К сожалению, они получают все большее распостранение благодаря низкой цене.
    2. Размер кристалла. Минимальный размер кристалла типового “эмиттера” 35×35 mil. Это чуть меньше 1х1 мм. Обычный размер – 38х38 либо 45х45 mil, то есть несколько больше 1х1 мм. (1 мил = 1/1000 дюйма = 0,0254 мм = 25,4 микрона)

    Есть разновидность светодиодов с увеличенным кристаллом. Чем больше размер кристалла, тем выше световой поток, максимальный рабочий ток и максимальная мощность. Соответственно, визуально различить стандартный светодиод и светодиод с увеличенным кристаллом достаточно легко.

    Подытоживая, можно сказать, что практически любой однокристальный качественный китайский эмиттер является трехваттным, что, несомненно, будет хорошей новостью для любителей поразгонять кристаллы 🙂 Некоторые экземпляры сносно себя чувствуют при токе до 1500 мА.

    Ложку дегтя в эту новость добавляют следующие нюансы :
    1. Вам сложно установить качество кристалла, если поставщик неизвестен. Как минимум желательно спросить продавца о том, чьи чипы стоят в светодиодах. Заминка с ответом косвенно может сказать, что продавец плохо разбирается в своем товаре.
    2. Часто кристалл залит люминофором так, что его самого и не видно. Это не очень хороший признак. Если люминофора не жалеют – значит он дешевый. К тому же такая заливка может скрывать кристалл меньшего размера. Ко всему прочему, дешевый люминофор способен потемнеть или даже отслоиться на повышенном токе.
    3. Неизвестно – из какого материала изготовлены проводники к кристаллу, и какова их толщина. Изначально они изготавливаются из золотой проволоки и должны быть рассчитаны на ток не менее 1000-1500 мА. На практике для удешевления светодиода применяют проволоку меньшей толщины либо из позолоченного серебра, а то и вовсе из меди или других металлов.
    4. Неизвестно качество приклейки кристалла к теплоотводящему основанию. Если ток 300-350 мА терпим для большинства “эмиттеров”, то 700 мА предъявляют непропорционально повышенные требования к качеству изготовления. Иными словами, при увеличении тока в два раза, требования к качеству приклейки и пайки кристалла к выводам возрастают в четыре раза.
    5. Нельзя забывать, что с увеличением рабочего тока падает общая эффективность светодиода. Если на токе 350 мА он, условно говоря, выдаст 100 люмен, то на токе 700 мА – только 160-170, но никак не 200 люмен. И чем выше ток, тем ниже эффективность.

    Также на стоимость светодиода влияет биновка по цветовой температуре и отбор по падению напряжения. Если цветовая температура мало влияет на надежность, то большой разброс в падении напряжения при параллельном соединении способен вызвать серьезную разницу в свечении и неравномерность распределения тока. Отсутствие этих операций в технологической цепочке при изготовлении светодиода удешевляет его, но о стабильности характеристик готового изделия говорить не приходится.

    Другими словами, использовать ток выше 350 мА при отсутствии внятной информации о происхождении, либо гарантий поставщика, не стоит. Если уж очень хочется – обеспечьте избыточный теплоотвод и проконтролируйте температуру. Все-таки почти в два раза больше света за те же деньги – стоит рискнуть 🙂 На токе 700 мА светодиоду потребуется около 70-80 кв.см площади радиатора. Контролировать температуру лучше всего термопарой на выводе работающего светодиода, подвесив этот вывод в воздухе. Это если есть такая возможность. Если нет – измерять максимально близко к подложке светодиода со стороны радиатора. Температуру выше 70 градусов на радиаторе можно считать критической. На выводе может быть до 75 С. Однако оптимум – до 60 С.

    На каком же токе оптимально использовать светодиод ? Это зависит от поставленной задачи. Если задача – создать максимально экономичный источник света – лучше обратить внимание на высокоэффективные светодиоды, выдающие более 120-130 Лм на ватт. При этом эксплуатировать их на токе выше 300 мА не стоит. В итоге вы получите, во-первых, максимум энергоэффективности, во-вторых, светодиод будет вечным при достаточном теплоотводе. Да, такие светодиоды ощутимо дороже своих собратьев с производительностью 100 Лм/ватт. Но при этом в долгосрочной перспективе более дорогие диоды окупятся быстрее. Если же задача максимальной экономии не стоит, вполне можно обойтись 35-38 mil чипами, разогнанными до 600-700 миллиампер. С точки зрения себестоимости готового изделия это ощутимо выгоднее использования высокоэффективных светодиодов.

    Напоследок коснусь разницы между мощными однокристальными светодиодами и сборками. Основной недостаток сборок – бОльшая уязвимость по сравнению с однокристаллками. К примеру, светодиод Cree MX3 содержит три кристалла, соединенных параллельно. Как известно, светодиодные кристаллы имеют некоторый технологический разброс. При параллельном подключении один из кристаллов практически всегда будет пропускать через себя бОльший ток и, как следствие, нагрузка на него будет выше. В процессе эксплуатации выход из строя одного кристалла повлечет за собой увеличение тока через оставшиеся два. Эта же особенность делает светодиод более критичным к кратковременным перегрузкам. Следующий минус – точки пайки. Как показала практика, очень часто светодиод выходит из строя вследствие потери контакта с кристаллом из-за многократных циклов нагрева-остывания. Соответственно, если мощный светодиод содержит три кристалла – вероятность выхода из строя по этой причине возрастает в три раза. Тем не менее, разница в цене зачастую компенсирует этот недостаток. Также к преимуществам можно отнести уменьшение “точечного эффекта”.
    Хотелось бы отметить, что китайские производители часто хитрят при продаже мощных светодиодных сборок (матриц). Первая из основных хитростей – заявление более высокого рабочего тока. К примеру, если матрица содержит 9 кристаллов 38 mil, включенных по схеме три последовательно-три параллельно, типовым считается ток 300 мА*3=900 мА, а мощность матрицы, соответственно, около 10 Вт. Предприимчивый производитель (продавец) заявляет ток 600*3=1800 мА и вуаля – матрица становится 20-ваттной ! И формально вроде никаких проблем – 35-38 mil кристалл, по идее, выдерживает такой ток без особых последствий. Но 9 таких кристаллов, собранных на единой подложке, могут дать непредсказуемый результат и по нагреву, и по деградации (необратимому уменьшению светового потока в процессе эксплуатации).
    Вторая хитрость – установка в матрицу кристаллов менее 35-38 mil. Это делает матрицу дешевле, но отнюдь не лучше.
    Ну и третья хитрость – совмещение двух предыдущих. Дает фантастические результаты при фантастически низкой цене 🙂
    Таким образом, при покупке следует убедиться в том, что вам не подсовывают плоды деятельности таких хитрых предпринимателей.

    Стоимость китайских светодиодов вполне располагает к попыткам выжать из них больше, чем заявлено. Если вы решились на этот шаг и разогнали свои “светики” – не поленитесь проконтролировать их визуально после пары недель работы. Если они выглядят также, как и при монтаже – есть надежда, что они себя хорошо чувствуют. Если же вокруг кристалла образовалось темное пятно – значит, тепло отводится от светодиода недостаточно эффективно. Думайте над конструкцией радиатора.

    Мощные сверхяркие светодиоды — особенности монтажа, питания, конструкции

    Осветительными приборами, где в качестве источников света используются сверхяркие светодиоды, уже никого не удивишь. Спрос на такие устройства неизменно растет, это напрямую связано с низким энергопотреблением этих приборов. Учитывая, что на освещение тратится около 25-35% потребляемой электроэнергии, экономия будет весьма ощутимой.

    Различные виды сверхярких светодиодных источников освещения

    Но учитывая относительно высокую стоимость сверхярких светодиодов, в силу их конструктивных особенностей, говорить о полном переходе на этот тип освещения еще не своевременно. По мнению специалистов, этот процесс займет от 5 до 10 лет, именно столько понадобится на отладку и внедрение новых технологий.

    Кратко об эффективности

    Эффективностью осветительного прибора принято считать соотношение вырабатываемого светового потока (измеряется в люменах) к потребляемой электроэнергии (ватт). Качественная лампа с нитью накала имеет эффективность около 16 люменов на ватт, флуоресцентная (энергосберегающая) — в четыре раза больше (64 лм/Вт), для длинных дневных ламп этот показатель в районе 80 лм/Вт.

    КПД сверхярких светодиодов, выпускающихся массово на текущий момент, примерно такой же, как у ламп дневного света. Обратите внимание, что мы говорим именно про массовую продукцию. Что касается теоретического предела для сверхярких светодиодных источников, то он определен порогом в 320 лм/Вт.

    Как обещают многие производители, в ближайшие несколько лет КПД можно будет повысить до уровня 213 лм/Вт.

    Влияние особенностей конструкции на стоимость

    Для изготовления сверхярких светодиодных источников света может применяться один из двух способов:

    • чтобы получить свет, близкий по спектру к белому, используются три кристалла установленных в одном корпусе. Один красный, второй синий и третий зеленый;
    • применяется кристалл, излучающий в голубом или ультрафиолетовом спектре, он подсвечивает линзу покрытую люминофором, в результате излучение преобразуется в свет, близкий по спектру к природному.

    Не смотря на то, что первый вариант более эффективен, его реализация обходится несколько дороже, что отрицательно отражается на распространенности. Помимо этого спектр света, излучаемый таким источником, отличается от природного.

    У приборов, изготовленных по второй технологии, меньше эффективность. Стоит также учитывать, что люминофор содержит в себе сложный по составу композит на основе церия и иттрия, которые сами по себе стоят недешево. Собственно, этим и объясняется относительно высокая стоимость сверхярких светодиодов белого света. Конструкция такого устройства показана на рисунке.

    Устройство сверхяркого светодиода

    Обозначения:

    • А – печатный проводник;
    • В – основание с повышенной теплопроводимостью;
    • C – защитный корпус устройства;
    • D – паста-припой;
    • E – кристалл светодиода, излучающий ультрафиолетовый или голубой свет;
    • F –люминофорное покрытие;
    • G – клей (может быть заменен эвтектическим сплавом);
    • H – провод, соединяющий кристалл и вывод;
    • K – отражатель;
    • J – теплоотводящее основание;
    • L – вывод питания;
    • M – диэлектрическая прослойка.

    Особенности монтажа

    На работу сверхярких светодиодов оказывает влияние степень нагрева кристалла и самого p-n перехода. От первого напрямую зависит срок эксплуатации устройства, от второго – уровень светового потока. Поэтому для длительной службы сверхярких светодиодов необходимо организовать надежный теплоотвод, делается это при помощи радиатора.

    Следует принять во внимание, что теплопроводящие основания этих полупроводников, как правило, проводят электричество. Поэтому когда устанавливается несколько элементов на один радиатор, следует позаботиться о надежной электроизоляции оснований.

    Хороший теплоотвод значительно увеличивает срок службы сверхярких светодиодов

    Остальные правила монтажа практически такие же, как у обычных диодов, то есть необходимо соблюдение полярности, как при установке самой детали, так и подключении питания.

    Особенности питания

    Учитывая относительно высокую стоимость сверхярких светодиодов, очень важно использовать для их работы надежные и качественные источники питания, поскольку эти полупроводниковые элементы критичны к токовой перегрузке.

    После нештатного режима прибор может остаться работоспособным, но мощность излучаемого светового потока существенно сократится. Помимо этого такой элемент с большой вероятностью станет причиной поломки и других, совместно подключенных светодиодов.

    Прежде, чем говорить о драйверах для сверхярких светодиодов, коротко расскажем об особенностях их питания. В первую очередь необходимо принять во внимание следующие факторы:

    • мощность светового потока, излучаемая этими элементами, напрямую зависит от величины протекающего через них электротока;
    • для сверхярких светодиодов характерна нелинейная ВАХ (вольт-амперная характеристика);
    • температура оказывает сильное влияние на ВАХ этих полупроводниковых приборов.

    Ниже показано изменение ВАХ при температуре полупроводникового элемента (сверхяркий smd-светодиод) 20 °С и 70 °С.

    Изменение характеристик от влияния температуры

    Как видно из графика, при подаче на полупроводник стабильного напряжения величиной 2 В, электроток, проходящий через него, меняется в зависимости от температуры. При нагреве кристалла 20°С он будет равен 14 мА, когда температура повысится до 70°С, этот параметр будет соответствовать 35 мА.

    Результатом такой разницы будет изменение мощности светового потока при одном и том же питающем напряжении. Исходя из этого, необходимо стабилизировать не напряжение, а электроток, проходящий через полупроводник.

    Такие блоки питания называются светодиодными драйверами, они представляют собой обычные стабилизаторы тока. Это устройство можно приобрести готовое или собрать самостоятельно, в следующем разделе мы приведем несколько типичных схем драйверов.

    Самодельный светодиодный драйвер

    Предоставим вашему вниманию несколько вариантов драйверов на основе специализированных микросхем компании Monolithic Power System, использование которых существенно упрощает конструкцию. Схемы приводятся в качестве примера, полное описание типового включения можно найти в даташит на микросхемы.

    Вариант первый на базе понижающего преобразователя МР4688.

    Пример включения МР4688

    Данный драйвер может работать с напряжениями от 4,5 до 80 В, порог максимального выходного электротока 2 А, что позволяет запитать светильник на сверхярких светодиодах большой мощности. Уровень электротока, проходящего через светодиоды, регулируется сопротивлением RFB . Реализация ШИМ-диммирования с частотой 20 кГц позволяет плавно изменять протекающий через светодиод электроток.

    Второй вариант драйвера на базе микросхемы МР2489. Ее компактный корпус (QFN8 или TSOT23-5) делает возможным размещение драйвера в цоколе MR16, используемый галогенными лампами, что позволяет заменить последние светодиодными. Типовая схема подключения МР2489 показана на рисунке.

    Драйвер на базе МР2489

    Приведенная выше схема позволяет включать два параллельных светодиода, у каждого из которых рабочий ток 350 мА.

    Последний вариант драйвера на базе микросхемы МР3412, который может быть использован в переносных фонариках. Отличительная особенность такой схемы – возможность работы от пальчикового элемента питания АА.

    Драйвер для фонарика на базе МР3412

    GTRacing › Блог › Основные характеристики светодиодов

    Приветствую Вас, друзья мои!
    Немного теории собранной с разных сайтов, пригодится для начинающих led-тюнеров =)
    Итак, основные характеристики светодиодов:

    сила света (эффективность)
    угол излучения,
    мощность
    рабочий ток
    цвет (температура свечения)
    деградация светодиода
    Индикаторные светодиоды (ILT) (3; 4,8; 5, 8, 10 мм светодиоды с линзой)
    СМД (SLT) светодиоды (3528, 5050)
    Мощные (PLT) светодиоды
    RGB светодиоды

    Эффективность (светоотдача).
    Отношение светового потока к потребляемой мощности (Лм/Вт). Это та величина, которая в первую очередь попадает во внимание специалистов, потому что именно по эффективности определяется применимость светодиодов для систем освещения. Для сравнения:
    лампочка накаливания: 8-12 лм/Вт; люминесцентные (энергосберегающие) лампы : 30-40 Лм/Вт
    современные светодиоды: 120-140 Лм/Вт
    газоразрядные лампы (ДРЛ): 50-60 Лм/Вт

    Показатели очень хорошие, что позволяет успешно конкурировать с люминесцентными, натриевыми, галогеновыми лампами. Более того, светодиоды уже выигрывают по этому показателю у газоразрядных ламп, т.к. весь световой поток у них идет в одну полуплоскость, поэтому не требуются разного рода отражатели.

    По источникам независимых исследований, именно нейтральный белый свет является наиболее комфортным для офисной работы, и в нем предметы становятся наиболее четкими. Нашей компанией используются светодиоды с нейтральным светом .Кроме того, в осветительных приборах мы используем цветные светодиоды (основные цвета : красный, синий, зеленый, желтый) и светодиоды RGB(полноцветный светодиод).

    Мощность светодиодов.
    — малой мощности: до 0,5 Вт (20-60 мА)
    — средней мощности:0,5-3Вт (100-700 мА)
    — большой мощности: более 3-х ватт (1000м А и более)

    Угол свечения
    как правило 120-140 градусов, в индикаторных 15-45 градусов.

    Деградация (ресурс) светодиодов.
    Очень важный показатель. Многие производители декларируют около 100 тысяч часов и даже более. Какие факторы оказывают влияние на ресурс светодиодов? В первую очередь это токовая деградация. Если через диод пропустить силу тока большую, чем та, на которую он рассчитан, то наступает быстрая деградация. Как правило: в пределах первых 1000 часов. Этим пользуются недобросовестные производители.

    Следующий фактор – температурная деградация. Светодиод в процессе работы нагревается. И, если не отводить тепло, то диод быстро потускнеет. Для отвода тепла применяется много конструкторских решений. В наших светильниках применяется плата с алюминиевой подложкой. Подложка в свою очередь имеет механический контакт с корпусом светильника, что дополнительно отводит тепло. Главное: в точке пайки светодиода соблюдать температурный режим не более 65 градусов Цельсия. В наших светильниках это достигается. Соответственно, находясь в рабочем режиме, ресурс диодов в предлагаемых светильниках составляет декларируемые 40-50 тысяч часов.

    Индикаторные светодиоды (ILT)
    Сегодня являются лидерами в повсеместном использовании. Появившись в 60-х годах, они быстро завоевали популярность, вытеснив лампы накаливания, используемых в качестве подсветки и индикации. А использование в данных светодиодах кристаллы с повышенной яркостью позволяют использовать их в мощных светоизлучающих устройствах (фонари, стоп-сигналы, индикаторные огни, светофоры, DIP-ленты и т.д.). На сегодняшний день практически ни одна бытовая техника не обходится без индикаторного светодиода. Существуют следующие стандартные типоразмеры индикаторных светодиодов : 3; 5; 4,8; 8 и 10мм. Рабочий ток таких светодиодов как правило 20-40мА, световая отдача может доходить для белого света 3-5Лм со светодиода. Угол излучения у данных светодиодов либо узкий (15-45 градусов), либо широкий (110-140 градусов).

    SMD-поверхностный монтаж
    Технология изготовления электронных изделий на печатных платах, а также связанные с данной технологией методы конструирования печатных узлов.
    Технологию поверхностного монтажа печатных плат также называют ТМП (технология монтажа на поверхность), SMT (surface mount technology) и SMD-технология (от surface mounted device — прибор, монтируемый на поверхность), а компоненты для поверхностного монтажа также называют чип-компонентами. Данная технология является наиболее распространенным на сегодняшний день методом конструирования и сборки электронных узлов на печатных платах. Основным ее отличием от «традиционной» технологии сквозного монтажа в отверстия является то, что компоненты монтируются на поверхность печатной платы, однако преимущества технологии поверхностного монтажа печатных плат проявляются благодаря комплексу особенностей элементной базы, методов конструирования и технологических приемов изготовления печатных узлов.

    Наиболее популярные SMD(SLT) светодиоды это светодиод 3528 и 5050.

    Светодиоды PLT
    Для производства светодиодного оборудования используются светодиоды средней и большой мощности . Все они маркируются как светодиоды PLT. Сравнительная характеристики используемых светодиодов представлена в таблице:

    RGB-светодиод
    Это просто три близко расположенных светодиода под одной линзой: красный — Red, зелёный — Green и синий — Blue, отсюда и название. Как известно, сочетанием этих трёх цветов можно получить любой другой цвет. Обычно у этих трёх светодиодов объединены плюсовые (с общим анодом) или минусовые (с общим катодом) выводы, соответственно, всего у RGB четыре вывода, хотя иногда бывает, что все шесть выводов делают раздельно. То есть, фактически, управление RGB — это управление тремя светодиодами. Яркость свечения светодиода зависит от протекающего через светодиод тока.

    Всех Вам благ, и ровных дорог!Всем пис peace =)

    Питание светодиодов с помощью ZXSC300

    Давиденко Юрий. г. Луганск
    Адрес Email –
    david_ukr (at) list.ru
    (замените (at) на @)

    Целесообразность использования светодиодов в фонарях, велофарах, в устройствах местного и дежурного освещениям на сегодняшний день не вызывает сомнений. Светоотдача и мощность светодиодов растет, а цены на них падают. Источников света, в которых вместо привычной лампы накаливания используются светодиоды белого свечения становиться всё больше и купить их не составляет труда. Магазины и рынки заполнены светодиодной продукцией китайского производства. Но качество этой продукции оставляет желать лучшего. По этому возникает необходимость в модернизации доступных (в первую очередь по цене) светодиодных источников света. Да и заменить лампы накаливания на светодиоды в добротных фонарях советского производства тоже имеет смысл. Надеюсь, что приведенная далее информация будет не лишней.

    Как известно, светодиод имеет нелинейную вольтамперную характеристику с характерной “пяткой” на начальном участке.

    Рис. 1 Вольт-амперная характерисика светодиода белого свечения.

    Как мы видим, светодиод начинает светиться, если на него подано напряжение больше 2,7 В. При питании его от гальванической или аккумуляторной батареи, напряжение которой процессе эксплуатации постепенно уменьшается, яркость излучения будет изменяться широких пределах. Чтобы избежать, этого необходимо питать светодиод стабилизированным током. А ток должен быть номинальным для данного типа светодиода. Обычно для стандартных 5-мм светодиодов он составляет среднем 20 мА.

    По этой причине приходится применять электронные стабилизаторы тока, которые ограничивают стабилизируют ток, протекающий через светодиод. Часто бывает необходимо запитать светодиод от одного или двух элементов питания напряжением 1,2 – 2,5 В. Для этого используют повышающие преобразователи напряжения. Поскольку любой светодиод является, по сути, токовым прибором, точки зрения энергоэффективности выгодно обеспечивать прямое управление током, протекающим через него. Это позволяет исключить потери, возникающие на балластном (токоограничительном) резисторе.

    Одним из оптимальных вариантов питания различных светодиодов от автономных источников тока небольшого напряжения 1-5 вольт является использование специализированной микросхемы ZXSC300 фирмы ZETEX. ZXSC300 это импульсный (индуктивный) повышающий преобразователь DC-DC c частотно-импульсной модуляцией.

    Особенности:

    • Контроллер PFM (Pulse Frequency Modulation)
    • КПД – 94%
    • Входное рабочего напряжения – 0,8 -9 В
    • Стабилизированный выходной ток
    • Рассеиваемая мощность – 450 мВт
    • Диапазон рабочих температур –40:85 0С
    • Рабочая частота (оптимальная) – 200 кГц
    • Корпус SOT23-5

    Рассмотрим принцип работы ZXSC300.

    На рисунке Рис.2 показана одна из типовых схем питания белого светодиода импульсным током с помощью ZXSC300. Импульсный режим питания светодиода позволяет максимально эффективно использовать энергию, имеющуюся в батарейке или аккумуляторе.

    Кроме самой микросхемы ZXSC300 преобразователь содержит: элемент питания 1,5 В, накопительный дроссель L1, силовой ключ – транзистор VT1, датчик тока – R1.

    Работает преобразователь традиционным для него образом. В течение некоторого времени за счет импульса, поступающего с генератора G (через драйвер), транзистор VT1 открыт и ток через дроссель L1 нарастает по линейному закону. Процесс длиться до момента, когда на датчике тока -низкоомном резисторе R1 падение напряжение достигнет величины 19 мВ. Этого напряжения достаточно для переключения компаратора (на второй вход которого подано небольшое образцовое напряжение с делителя). Выходное напряжение с компаратора поступает на генератор, в результате чего силовой ключ VT1 закрывается и энергия, накопленная в дросселе L1, поступает в светодиод VD1. Далее процесс повторяется. Таким образом, из первичного источника питания в светодиод поступает фиксированные порции энергии, которые он преобразует в световую.

    Управление энергией происходит с помощью частотно-импульсной модуляции ЧИМ (PFM Pulse Frequency Modulation). Принцип ЧИМ заключается в том, что изменяется частота, а постоянным остаётся длительность импульса или паузы, соответственно, открытого (On-Time) и закрытого (Off-Time) состояния ключа. В нашем случаи неизменным остаётся время Off-Time, т.е. длительность импульса, при котором внешний транзистор VT1 находится в закрытом состоянии. Для контроллера ZXSC300 Toff составляет 1,7 мкс.

    Это время достаточно для передачи накопленной энергии из дросселя в светодиод. Длительность импульса Ton, в течение которого открыт VT1, определяется величиной токоизмерительного резистора R1, входным напряжением, и разницей между входным и выходным напряжением, а энергия, которая накапливается в дросселе L1, будет зависеть от его величины. Оптимальным считается, когда полный период Т равен 5мкс (Toff +Ton). Соответственна рабочая частота F=1/5мкс =200 кГц.

    При указанных на схеме Рис.2 номиналах элементов осциллограмма импульсов напряжения на светодиоде имеет вид

    Рис.3 вид импульсов напряжения на светодиоде. (сетка 1В/дел, 1мкс/дел)

    Немного подробнее об используемый деталях.

    Транзистор VT1 -FMMT617, n-р-n транзистор с гарантированным напряжением насыщения коллектор-эмиттер не более 100 мВ при токе коллектора 1 А. Способен выдерживать импульсный ток коллектора до 12 А (постоянный 3 А), напряжение коллектор-эмиттер 18 В, коэффициент передачи тока 150. 240. Динамические характеристики транзистора: время включения/ выключения 120/160 нс, f =120 МГц, выходная емкость 30 пф.

    FMMT617 является лучшим коммутационным устройством, которое можно использовать совместно с ZXSC300. Он позволяет получить высокий КПД преобразования при входном напряжении меньше одного вольта.

    Накопительный дроссель L1.

    В качестве накопительного дросселя можно использовать как промышленные SMD Power Inductor, так и самодельные. Дроссель L1 должен выдерживать максимальный ток силового ключа VT1 без насыщения магнитопровода. Активное сопротивление обмотки дросселя не должно превышать 0,1 Ом иначе КПД преобразователя заметно снизиться. В качестве сердечника для самостоятельной намотки хорошо подходят кольцевые магнитопроводы (К10x4x5) от дросселей фильтров питания использующиеся в старых компьютерных материнских платах. На сегодняшний день б/у компьютерное «железо» можно приобрести по бросовым ценам на любом радиорынке. А «железо» – это неисчерпаемый источник разнообразный деталей для радиолюбителей. При самостоятельной намотки для контроля понадобится измеритель индуктивности.

    Токоизмерительный резистор R1. Низкоомный резистор R1 47мОм получен параллельным соединением двух SMD резисторов типоразмера1206 по 0,1 Ом.

    Светодиод VD1.

    Светодиод VD1 белого свечения с номинальным рабочим током 150 мА. В авторской конструкции используется два четырехкристальных светодиода соединенные параллельно. Номинальный ток одного из них составляет 100 мА, другого 60 мА. Рабочий ток светодиода определен путем пропускания через него, стабилизированного постоянного тока и контроля температуры катодного (минусового) вывода, который является радиатором и отводит тепло от кристалла.

    При номинальном рабочем токе температура теплоотводящего вывода не должна превышать 40 – 45 градусов. Вместо одного светодиода VD1 также можно использовать восемь параллельно соединенных стандартный 5 мм светодиодов с током 20 мА.

    Внешний вид устройства

    Рис. 4a.

    Рис. 4b.

    Печатная плата показана на Рис. 5

    Рис. 5 (размер 14 на 17 мм).

    При разработке плат для подобных устройств необходимо стремиться к минимальным значениям емкости и индуктивности проводника соединяющий К VT1 с накопительным дросселем и светодиодом, а также к минимальным индуктивности и активному сопротивлению входных и выходных цепей и общего провода. Сопротивление контактов и проводов через которые поступает напряжение питания должно быть тоже минимально.

    На следующих схемах Рис. 6 и Рис. 7 показан способ питания мощных светодиодов типа Luxeon с номинальным рабочим током 350 мА

    Рис. 6 Способ питания мощных светодиодов типа Luxeon

    Рис. 7 Способ питания мощных светодиодов типа Luxeon – ZXSC300 запитана от выходного напряжения.

    В отличие от рассмотренной ранее схемы здесь питание светодиода происходит не импульсным, а постоянным током. Это позволяет легко контролировать рабочий ток светодиода и КПД всего устройства. Особенность преобразователя на Рис. 7 заключается в том, что ZXSC300 запитана от выходного напряжения. Это позволяет ZXSC300 работать (после запуска) при снижении входного напряжения вплоть до 0,5 В. Диод VD1 – Шотки рассчитанный на ток 2А. Конденсаторы С1 и С3 – керамические SMD, С2 и С3 – танталовые SMD.

    Печатные платы показаны на Рис. 8 Рис. 9 (размер 25 на 25 мм).

    На Рис. 10 показана схема питания 5-6 светодиодов включённых последовательно с рабочим током 20мА.

    Рис. 10 Схема питания 5-6 светодиодов включённых последовательно с рабочим током 20мА.

    В таблице 1 приведены рекомендации по выбору элементов схемы.

    Входное напряжение питание, В.Рабочий ток светодиодов, мАКоличество светодиодов последовательно соединенных.Сопротивление токоизмерительного резистора, мОм.Индуктивность накопительного дросселя, мкГн.
    1,520127068
    1,530118068
    1,550110068
    1,5202150100
    1,5302100100
    1,550239100
    3,520322068
    3,520415068
    3,52067768
    3,53064768
    520427068
    530610068

    На сегодняшний день стали доступны в использовании мощные 3 – 5 Вт светодиоды различных производителей (как именитых так и не очень).

    И в этом случаи применение ZXSC300 позволяет легко решить задачу эффективного питание светодиодов с рабочим током 1 А и более.

    В качестве силового ключа в данной схеме удобно использовать подходящий по мощности n-канальный (работающий от 3 В) Power MOSFET, можно также использовать сборку серии FETKY MOSFET (с диодом Шотки в одном корпусе SO-8).

    С помощью ZXSC300 и нескольких светодиодов можно легко вдохнуть вторую жизнь в старый фонарь. Модернизации был подвергнут аккумуляторный фонарь ФАР-3.

    Рис.11 внешний вид модернизированного фонаря ФАР-3.

    Светодиоды использовались 4-х кристальные с номинальным током 100 мА – 6 шт. Соединены последовательно по 3. Для управления световым потоком применены два преобразователя на ZXSC300, имеющих независимое вкл/выкл. Каждый преобразователь работает на свою тройку светодиод.

    Рис.12 внешний вид преобразователей и платы со светодиодами.

    Платы преобразователей выполнены на двухстороннем стеклотекстолите, вторая сторона соединена с минусом питания.

    Рис.13 – принципиальные схемы преобразователей для питания трех светодиодов с номинальным током 100 мА.

    Рис.14 – принципиальные схемы преобразователей для питания трех светодиодов с номинальным током 100 мА.

    В фонаре ФАР-3 в качестве элементов питания используются три герметичных аккумулятора НКГК-11Д (KCSL 11). Номинальное напряжение этой батареи 3,6 В. Конечное напряжение разряженной батареи составляет 3 В (1 В на элемент). Дальнейший разряд нежелателен т. к. это приводит к сокращению срока службы батареи. А дальнейший разряд возможен – преобразователи на ZXSC300 работают, как мы помним, вплоть до 0,9 В.

    Поэтому для контроля напряжения на батарее было спроектировано устройство, схема которого показана на Рис. 15.

    Рис.15 – принципиальная схема устройства контроля напряжения на батареи 3 НКГК-11Д.

    В данном устройстве используется недорогая доступная элементная база. DA1 – LM393 всем известный сдвоенный компаратор. Опорное напряжения 2,5 В получаем с помощью TL431 (аналог КР142ЕН19). Напряжение срабатывания компаратора DA1.1 около 3 В задаётся делителем R2 -R3 (для точного срабатывания возможно потребуется подбор этих элементов). Когда напряжение на батареи GB1 снижается до 3 В загорается красный светодиод HL1, если напряжение больше 3 В то HL1 гаснет и загорается зеленый светодиод HL2. Резистор R4 определяет гистерезис компаратора.

    Печатная плата устройства контроля показана на Рис. 16 (размер 34 на 20 мм).

    Если у вас возникли трудности с приобретением микросхемы ZXSC300, транзистора FMMT617 или низкоомных SMD резисторов 0,1 Ом, можно обращаться к автору на e-mail david_ukr (аt) list.ru

    Вы можете приобрести следующие компоненты (доставка почтой)

    О светодиодах

    Запись дневника создана пользователем Лифтанутый, 21.02.12
    Просмотров: 15.030, Комментариев: 12

    Эпоха массового внедрения светодиодов в жизнь наступила незаметно. Они быстро внедряются в повседневную жизнь. Освещение, бытовая техника, реклама, автомобили, а теперь еще и высокотехнологичное растениеводство – это неполный перечень сфер их использования.

    Я, как дачник, заинтересовался последней сферой и здесь пытаюсь популярно сообщить полезную информацию о светодиодах для растений.

    Основные преимущества светодиодного освещения

    • Экономия электроэнергии на освещении до 10 раз;
    • Долговечность (срок в режиме непрерывного свечения службы не менее 5 лет);
    • Отсутствие необходимости проведения дорогостоящих работ по обслуживанию светильников;
    • Комфортное освещение с заданным спектром и без вредных пульсаций
    • Простое решение для обеспечения аварийного режима освещения;
    • Эстетически привлекательное решение при небольших затратах;
    • Безопасность эксплуатации;
    • Высокая устойчивость к вибрациям;

    В освещении – светодиоды следующая, после электроламп, ступень развития. Но если с лампочкой мы уверенно управляемся, то со светодиодами знакомы далеко не все. Предлагаю устранить сей пробел – это пригодится в будущем.
    Светодиоды – это большая группа высокотехнологичных изделий микроэлектроники, различающихся не только областью применения, но и по цветовыми характеристиками, размерами, внутренним устройством, мощностью светового потока и другими параметрами. Если разбить слово “светодиод” на составляющие, то мы получим “свето” и “диод”. А диод, как мы знаем, может пропускать ток только в одном направлении(от + к -, от анода к катоду), широко используется в электронике,как выпрямитель переменного тока.

    Светодиод – это полупроводниковый кристалл в корпусе или без корпуса с двумя выводами. Это могут быть проволочные вывода или контактные площадки для поверхностного монтажа. Когда через кристалл светодиода проходит постоянный электрический ток – он излучает свет (эмитирует). В выпрямительных диодах другие кристаллы, которые не светятся.

    Для упрощения можно сказать, что есть две группы светодиодов: маломощные индикаторные и мощные сверх яркие.

    Самые широко распространённые светодиоды – это индикаторные, они известны нам уже несколько десятков лет. Они есть в любом устройстве бытовой техники, приборах контроля и диагностики. Они могут быть любой формы, и цвета, но объединяет их небольшой номинальный ток, не превышающий 20мА. Падение напряжения на них не превышает 3В.

    Если перемножить напряжение на силу тока, мы получаем мощность. Для индикаторных она не превышает 3В х 0,02 = 0,06Ватт. Это оправдывает их назначение – не освещать, а информировать.

    Нам сегодня интересны другие, мощные и сверхяркие светодиоды, которые можно использовать для освещения, в том числе растений.
    Они появились много позднее индикаторных, но сегодня уже стали относительно более доступными, благодаря наличию ebay.com и множества интернет-магазинов.
    Они рекламируются под мощностью 1 и даже 3 ватта. Все, что мощнее 3Вт, это уже не единичные кристаллы, а собранные вместе, под одно питание, кристаллы 1Вт – светодиодные матрицы.
    Пока нет системной классификации мощных светодиодов. Каждый производитель обозначает и маркирует их по своему, поэтому из маркировки понять что покупаешь – сплошная лотерея. Но их группируют по главному параметру – номинальному току.
    У мощных светодиодов он бывает от 300 до 700мА и выше. Напряжение для светодиода – второстепенный параметр – главное ток!

    Падение напряжения на мощных светодиодах определяется спектральной характеристикой кристалла и обычно составляет 1,8-2,0В для красных и 3,0-3,5В для синих, зеленых и белых.
    Следует отметить, что светодиоды бывают монохромные, которые не имеют люминофора (прозрачные) и светят одним цветом -синим, красным) и белые, которые изготовлены на базе монохромных и светят БЕЛЫМ ( всеми цветами радуги), за счет люминофора.

    Для того, чтобы включить светодиод, нужен источник постоянного напряжения – аккумулятор, батарейка, адаптер и пр. Напряжения светодиод возьмет столько, сколько ему нужно (от типа кристалла), а вот тока – сколько дадите. То есть если ваш источник питания может выдать 5 ампер – светодиод будет брать этот ток, но через какое-то время обязательно сгорит.

    Поэтому ток светодиода нужно обязательно ограничивать. Простейший элемент ограничения тока – резистор, который включается последовательно и «гасит» избыток напряжения, преобразуя проходящий ток в тепло.
    Например вам нужно сделать индикатор наличия напряжения для автомобиля на светодиоде. Зная, что падение напряжения на индикаторном светодиоде 3в (для зеленых), вычисляем, что нам нужно «погасить лишнее напряжение» бортовой сети 12-3=9В. Применив закон Ома, разделим 9Вольт на 0,02А (20мА –ток светодиода) и получим сопротивление гасящего резистора 45О Ом.
    Мощные светодиоды так подключать тоже можно, но неудобно – нужны мощные резисторы, ток ведь большой! Эти резисторы называют гасящими, они резко снижают КПД светильника в целом. Поэтому для мощных светодиодов выпускаются особые источники питания – которые непрерывно обеспечивают стабильный ток (constant current). Это – драйверы, чисто маркетинговое название – чтобы не путать их с блоками питания – источниками напряжения (constant voltage).
    Исправный драйвер, а это довольно сложное электронное устройство – ни при каких условиях не выдаст больше тока, чем он рассчитан – как бы вы не подключали диоды. Драйвер отличить от обычного источника напряжения можно только по маркировке – внешне они идентичны.
    В магазинах теперь продают множество светодиодных светильников, имеющих цоколь и форму привычных нам ламп накаливания, галогенных и даже люминесцентных трубок. Это объясняется экономическими соображениями и переходным периодом, когда имеются миллионы люстр, бра и пр. – не выбрасывать же их сразу.
    Многих смущает высокая стоимость светодиодных ламп. Но считать их чрезмерно дорогими – нет оснований. Они просто – другие. Давайте рассмотрим, почему они такие дорогие. Что такое лампа накаливания? Стеклянная колба с цоколем, внутри которой находится вольфрамовая спираль. По сути своей лампа больше греет, нежели светит.

    КПД обычной лампы накаливания не превышает 5%. Есть и другие лампы, но их КПД все равно намного ниже ,чем у светодиодных. Ни о какой экономичности говорить здесь не приходится, именно поэтому во всех странах начали массово запрещать этот источник света. (Когда у нас ввели запрет на выпуск ламп более 100вТ – стали выпускать лампы 99вТ). У светодиодов КПД составляет до 50%.

    Итак, из чего состоит светодиодная лампа? Безусловно, один из важнейших компонентов – светодиод. От того, какой он, зависит то, как светит наша лампа.
    Главный параметр осветительного светодиода – количество люмен на ватт. У дорогих светодиодов световой поток выше. И что немаловажно – они меньше греются, ведь у них выше КПД. А значит, лампа на дорогих светодиодах будет долговечнее и экономичнее. Дорогие светодиоды – это американские, европейские, корейские и японские бренды. Из Китая приходят похожие лампы, но… только внешне. К ак известно, надёжность составного устройства определяется надежностью самого ненадежного узла. В цоколе лампы еще располагается источник питания (драйвер) и, к сожалению, именно он определяет срок службы всей лампы. На сегодня это самое узкое место светодиодной лампы.
    Еще один немаловажный компонент светодиодной лампы – радиатор. Он должен обеспечить хороший теплоотвод. На нем китайцы экономят
    Все это имеет место в дешевых китайских поделках, потому что сэкономить они могут только на том, чего не видно (драйверах и радиаторах). . Но положение постепенно исправляется и при желании можно найти достойные экземпляры.
    Так что пока на светодиодах можно сэкономить электроэнергию, но не деньги.

    О «растительных» светодиодах.

    Это мощные и яркие светодиоды монохромного свечения: синие с длиной волны (440нм) и красные (660нм) , которые используются для выращивания рассады или досвечивания овощей, цветов и ягод в любое время года. Их использование основано на теории фотосинтеза, описанной русским ученым Тимирязевым. Их не нужно путать с подобными цветными светодиодами, предназначенными для декоративно – рекламных целей. Поэтому важно запомнить длины волн “растительных” светодиодов в нанометрах 440 и 660.

    Именно такие светодиоды, можно назвать правильными для досветки растений. Мы должны познакомиться с китайскими светодиодами, которые в несколько раз дешевле «брендов», недоступных нам.

    Сначала уточним, что такое мощность светодиода. Китайцы рекламируют нам одноваттные, трехваттные и т.д. светодиоды. Они вводят нас в заблуждение, потому что мощность определяется только электрическими параметрами питания.
    У каждого светодиода существует понятие – номинальный рабочий ток. Номинальный – это самый большой ток, который светодиод выдерживает длительное время без деградации. Только им определяется максимальная мощность светодиода. Если Вы выполните вычисления ниже, то убедитесь, что заявленная мощность

    Через китайский светик можно пропустить максимум ток в 700 мА. Это означает, что его максимальная мощность равна произведению напряжения на ток, то есть примерно 3,5 В*0,7А=2,5 ватта. А для красных и того меньше. К тому же у дешевых кристаллов падение напряжения больше, чем у качественных брендовых, и на токе 0,7А может достигать 4-4,5 вольт, а это уже полноценные три ватта. Чем меньше падение напряжения на токе 700 мА, тем экономичнее светодиод – выше его КПД. Однако это ненадежно.

    Большинство китайских светодиодов изготавливается в так называемом корпусе «эммитер», у которого диаметр теплоотводящего медного основания, всего около 5,5 мм. Это предъявляет повышенные требования к качеству теплового контакта с радиаторм. Размер кристалла пока невелик, примерно 1,5мм х 1,5мм. Чем больше размер кристалла, тем выше его световой поток, номинальный ток и максимальная мощность.

    Я заметил, что при увеличении тока регулятором, глаз совсем не замечает увеличение светового потока, а нагрев да, растет. Поэтому не следует гнаться за большими токами, а подобрать его, чтобы светик не нагревался выше 80 градусов или предпринимать меры для принудительного отвода тепла – вентилятор.

    Читайте также:  Розетка для плиты: переходник, установка, двойная, выбор и характеристики
    Ссылка на основную публикацию