Как подключить светодиод к 220В: резистор, конденсатор, способы подключения

Подключение светодиода к сети 220в

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока – розетки, которая есть в любой благоустроенной квартире.
Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль – это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

(. как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

Читайте также:  Светодиодные лампы: что это такое, отличие от энергосберегающих, энергопотребление

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье “Драйвер для светодиодов (светодиодной лампы)”.

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений – первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Как подключить светодиод к 220 В

У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.

Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.

Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В. Эту величину возьмем за основу при дальнейших расчетах.

Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.

Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.

Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.

Как подключить светодиод к 220 В с помощью резистора

Для большей наглядности изобразим расчетную схему.

Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.

С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.

Определим сопротивление R1, необходимое для первого светодиода:

Сетевое напряжение делим на два по уже указанной выше причине.

Мощность рассеивания резистор равна:

Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.

Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:

Мощность рассеивания равна:

Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.

Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.

Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.

Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.

Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.

В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.

Как подключить светодиод к 220 В с помощью конденсатора

Выше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.

Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:

Из приведенной формулы нам необходимо найти значение емкости:

Подставляем данные значения и находим емкости:

Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В.

Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.

Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.

Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:

Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.

Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания. 5 ватт будут попросту греть резистор.

Как подключить светодиод к осветительной сети

Прочитав этот заголовок, кто-то, возможно, спросит: «А зачем?» Да, если просто воткнуть светодиод в розетку, даже включив его по определенной схеме, практического значения это не имеет, никакой полезной информации не принесет. А вот если тот же светодиод подключить параллельно нагревательному элементу, управляемому от терморегулятора, то можно визуально контролировать работу всего прибора. Иногда такая индикация позволяет избавиться от множества мелких проблем и неприятностей.

В свете того, что уже было сказано о включении светодиодов в предыдущих статьях, задача кажется тривиальной: просто поставил ограничительный резистор нужного номинала, и вопрос решен. Но все это хорошо, если питать светодиод выпрямленным постоянным напряжением: как подключили светодиод в прямом направлении, так он и остался.

При работе на переменном напряжении все не так просто. Дело в том, что на светодиод, кроме прямого напряжения, будет воздействовать еще и напряжение обратной полярности, ведь каждый полупериод синусоида меняет знак на противоположный. Это обратное напряжение не будет засвечивать светодиод, но привести его в негодность может очень быстро. Поэтому приходится принимать меры по защите от этого «вредного» напряжения.

В случае сетевого напряжения расчет гасящего резистора следует вести исходя из величины напряжения 310В. Почему? Здесь все очень просто: 220В это действующее напряжение, амплитудное же значение составит 220*1,41=310В. Амплитудное напряжение в корень из двух (1,41) раз больше действующего, и об этом забывать нельзя. Вот такое прямое и обратное напряжение приложится к светодиоду. Именно из величины 310В и следует рассчитывать сопротивление гасящего резистора, и именно от этого напряжения, только обратной полярности, защищать светодиод.

Как защитить светодиод от обратного напряжения

Почти для всех светодиодов обратное напряжение не превышает 20В, ведь никто не собирался делать на них высоковольтный выпрямитель. Как же избавиться от такой напасти, как защитить светодиод от этого обратного напряжения?

Оказывается, все очень просто. Первый способ – последовательно со светодиодом включить обычный выпрямительный диод с высоким обратным напряжением (не ниже 400В), например, 1N4007 – обратное напряжение 1000В, прямой ток 1А. Именно он не пропустит высокое напряжение отрицательной полярности к светодиоду. Схема такой защиты показана на рис.1а.

Второй способ, не менее эффективный, – просто зашунтировать светодиод другим диодом, включенным встречно – параллельно, рис.1б. При таком способе защитный диод даже не должен быть с высоким обратным напряжением, достаточно любого маломощного диода, например, КД521.

Более того, можно просто включить встречно – параллельно два светодиода: поочередно открываясь, они сами защитят друг друга, да еще и оба будут излучать свет, как показано на рисунке 1в. Это уже получается третий способ защиты. Все три схемы защиты показаны на рисунке 1.

Рисунок 1. Схемы защиты светодиодов от обратного напряжения

Ограничительный резистор на этих схемах имеет сопротивление 24КОм, что при действующем напряжении 220В обеспечивает ток порядка 220/24=9,16мА, можно округлить до 9. Тогда мощность гасящего резистора составит 9*9*24=1944мВт, почти два ватта. Это притом, что ток через светодиод ограничен на уровне 9мА. Но длительное использование резистора на предельной мощности ни к чему хорошему не приведет: сначала он почернеет, а потом совсем сгорит. Чтобы этого не произошло, рекомендуется ставить последовательно два резистора по 12КОм мощностью по 2Вт каждый.

Если задаться уровнем тока в 20мА, то мощность резистора составит еще больше – 20*20*12=4800мВт, без малого 5Вт! Естественно, что печку такой мощности для отопления помещения никто себе позволить не сможет. Это из расчета на один светодиод, а что если будет целая светодиодная гирлянда?

Конденсатор – безваттное сопротивление

Схема, показанная на рисунке 1а, защитным диодом D1 «срезает» отрицательный полупериод переменного напряжения, поэтому и мощность гасящего резистора снижается вдвое. Но, все равно, мощность остается весьма значительной. Поэтому, часто в качестве ограничительного резистора применяют балластный конденсатор: ток он ограничит ничуть не хуже резистора, а вот тепла выделять не будет. Ведь недаром часто конденсатор называют безваттным сопротивлением. Этот способ включения показан на рисунке 2.

Читайте также:  Соединение многожильных проводов: с одножильными, между собой, мягкий и жесткий

Рисунок 2. Схема включения светодиода через баластный конденсатор

Здесь вроде бы все хорошо, даже есть защитный диод VD1. Но не предусмотрены две детали. Во-первых, конденсатор C1 после выключения схемы может остаться в заряженном состоянии и хранить заряд до тех пор, пока кто-нибудь не разрядит его своей рукой. А это, поверьте, обязательно когда-нибудь произойдет. Удар током получается, конечно, не смертельный, но достаточно чувствительный, неожиданный и неприятный.

Поэтому, во избежание такой неприятности, эти гасящие конденсаторы шунтируются резистором с сопротивлением 200…1000КОм. Такая же защита устанавливается и в бестрансформаторных блоках питания с гасящим конденсатором, в оптронных развязках и некоторых других схемах. На рисунке 3 этот резистор обозначен как R1.

Рисунок 3. Схема подключения светодиода к осветительной сети

Кроме резистора R1, на схеме появляется еще резистор R2. Его назначение ограничить бросок тока через конденсатор при подаче напряжения, что помогает защитить не только диоды, но и сам конденсатор. Из практики известно, что при отсутствии такого резистора конденсатор иногда обрывается, емкость его становится намного меньше номинальной. Излишне говорить, что конденсатор должен быть керамический на рабочее напряжение не менее 400В или специальный для работы в цепях переменного тока на напряжение 250В.

На резистор R2 возлагается еще одна немаловажная роль: в случае пробоя конденсатора он срабатывает как предохранитель. Конечно, светодиоды придется тоже заменить, но, по крайней мере, соединительные провода останутся целыми. По сути дела именно так срабатывает плавкий предохранитель в любом импульсном блоке питания, – транзисторы сгорели, а печатная плата осталась почти нетронутой.

На схеме, показанной на рисунке 3, изображен всего один светодиод, хотя на самом деле их можно включить последовательно несколько штук. Защитный диод вполне справится со своей задачей один, но емкость балластного конденсатора придется, хотя бы приблизительно, но все, же рассчитать.

Как рассчитать емкость гасящего конденсатора

Для того, чтобы рассчитать сопротивление гасящего резистора, надо из напряжения питания вычесть падение напряжения на светодиоде. Если соединено последовательно несколько светодиодов, то просто сложить их напряжения, и также вычесть из напряжения питания. Зная этот остаток напряжения и требуемый ток, по закону Ома рассчитать сопротивление резистора очень просто: R=(U-Uд)/I*0,75.

Здесь U – напряжение питания, Uд – падение напряжения на светодиодах (если светодиоды включены последовательно, то Uд есть сумма падений напряжения на всех светодиодах), I – ток через светодиоды, R – сопротивление гасящего резистора. Здесь как всегда, – напряжение в Вольтах, ток в Амперах, результат в Омах, 0,75 – коэффициент для повышения надежности. Эта формула уже приводилась в статье «Об использовании светодиодов».

Величина прямого падения напряжения для светодиодов разных цветов разная. При токе 20мА у красных светодиодов 1,6…2,03В, желтых 2,1…2,2В, зеленых 2,2…3,5В, синих 2,5…3,7В. Самым высоким падением напряжения обладают белые светодиоды, обладающие широким спектром излучения 3,0…3,7В. Нетрудно видеть, что разброс этого параметра достаточно широкий.

Здесь приведены падения напряжения лишь нескольких типов светодиодов, просто по цветам. На самом деле этих цветов намного больше, а точное значение можно узнать лишь в техдокументации на конкретный светодиод. Но зачастую этого и не требуется: чтобы получить приемлемый для практики результат, достаточно подставить в формулу какое-то среднее значение (обычно 2В), конечно, если это не гирлянда из сотни светодиодов.

Для расчета емкости гасящего конденсатора применяется эмпирическая формула C=(4,45*I)/(U-Uд),

где C – емкость конденсатора в микрофарадах, I – ток в миллиамперах, U – амплитудное напряжение сети в вольтах. При использовании цепочки из трех последовательно соединенных белых светодиодов Uд примерно около 12В, U амплитудное напряжение сети 310В, для ограничения тока на уровне 20мА понадобится конденсатор емкостью

C=(4,45*I)/(U-Uд)= C=(4,45*20)/(310-12)= 0,29865мкФ, почти 0,3мкФ.

Ближайшее стандартное значение емкости конденсатора 0,15мкФ, поэтому, для использования в данной схеме придется применить два параллельно соединенных конденсатора. Здесь надо сделать замечание: формула действительна только для частоты переменного напряжения 50Гц. Для других частот результаты будут неверны.

Конденсатор сначала надо проверить

Перед тем, как использовать конденсатор, его необходимо проверить. Для начала просто включить в сеть 220В, лучше через предохранитель 3…5А, и минут через 15 проверить на ощупь, а нет ли заметного нагрева? Если конденсатор холодный, то можно его использовать. В противном случае обязательно взять другой, и тоже предварительно проверить. Ведь все-таки 220В это уже не 12, тут все несколько иначе!

Если эта проверка прошла успешно, конденсатор не нагрелся, то можно проверить, не случилась ли ошибка в расчетах, той ли емкости конденсатор. Для этого надо включить конденсатор как в предыдущем случае в сеть, только через амперметр. Естественно, что амперметр должен быть переменного тока.

Это напоминание о том, что не все современные цифровые мультиметры могут измерять переменный ток: простые дешевые приборы, например, очень популярные у радиолюбителей серии DT838, способны измерять только постоянный ток, что покажет такой амперметр при измерении переменного тока никому не ведомо. Скорей всего это будет цена на дрова или температура на Луне, но только не переменный ток через конденсатор.

Если измеренный ток будет примерно таким, как получилось при расчете по формуле, то можно смело подключать светодиоды. Если же вместо ожидаемых 20…30мА получилось 2…3А, то тут, либо ошибка в расчетах, либо неправильно прочитана маркировка конденсатора.

Выключатели с подсветкой

Здесь можно заострить внимание еще на одном способе включения светодиода в осветительную сеть, используемого в выключателях с подсветкой. Если такой выключатель разобрать, то можно обнаружить, что никаких защитных диодов там нет. Так что же, все что написано чуть выше – бред? Совсем нет, просто надо внимательно приглядеться к разобранному выключателю, точнее к номиналу резистора. Как правило, его номинал не менее 200КОм, может даже несколько больше. При этом, очевидно, что ток через светодиод ограничится на уровне около 1мА. Схема выключателя с подсветкой показана на рисунке 4.

Рисунок 4. Схема подключения светодиода в выключателе с подсветкой

Здесь одним резистором убивают сразу несколько «зайцев». Конечно, ток через светодиод будет мал, светиться он будет слабо, но вполне ярко, чтобы разглядеть это свечение темной ночью в комнате. А ведь днем это свечение вовсе не нужно! Так что пусть себе светится незаметно.

При этом слабым будет и обратный ток, настолько слабым, что никоим образом не сможет спалить светодиод. Отсюда экономия ровно на один защитный диод, о котором было рассказано выше. При выпуске миллионов, а может даже миллиардов, выключателей в год экономия получается немалая.

Казалось бы, что после прочтения статей о светодиодах, все вопросы об их применении ясны и понятны. Но существует еще немало тонкостей и нюансов при включении светодиодов в различные схемы. Например, параллельное и последовательное соединение или, по-другому, хорошие и плохие схемы.

Иногда хочется собрать гирлянду из нескольких десятков светодиодов, но как ее рассчитать? Сколько можно включить последовательно светодиодов, если есть блок питания с напряжением 12 или 24В? Эти и другие вопросы будут рассмотрены в следующей статье, которую так и назовем «Хорошие и плохие схемы включения светодиодов».

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Как правильно подключить светодиод к сети 220 В

Чаще всего для того, чтобы подключить светодиоды к сети 220 В, приобретаются драйверы. Их использование не целесообразно, если источник света обладает малой мощностью (например, индикатор подсветки).

Приходится искать вариант, как подключить светодиод к 220 В с минимальными затратами и максимальным КПД.

Существует несколько схем, основанных на использовании резисторов и конденсаторов в качестве преобразователей вольтажа.

В чем сложность

Проблема подключения светодиода к сети 220 вольт вызвана его техническими характеристиками. Чтобы светиться, LED-лампа пропускает ток в одном направлении.

Из сети поступает напряжение 220 В с частотой 50 Гц, диод может работать только на полуволнах. Это значит, что он мигает с той же частотой, что ток из сети. При прохождении в обратном направлении у напряжения противоположенная полярность, не позволяющая светиться и способствующая разрушению кристаллов.

Важно! Включение светодиода к электросети на 220 вольт требует подсоединения устройства, которое будет подавать столько тока, сколько лампе требуется для свечения.

Схемы подключения

Для снижения вольтажа существуют 3 варианта:

Первый способ самый простой. Гасящий резистор (сопротивление) нужно включить в сеть 220 В последовательно с диодом с учетом амплитудного значения вольтажа 310 В (220 В*1,41). Для защиты от отрицательного воздействия обратного напряжения следует подключить встречно-параллельно дополнительный диод (напряжение от 400 В). Это позволяет повернуть вольты на сопротивление.

Такое же принцип используется, если нужно подключить встречно-параллельно несколько светодиодных ламп. Каждая из них горит на отдельном участке синусоида частоты, защищая друг друга.

Обе схемы обладают важным недостатком – выделением большой мощности на сопротивлении. Оно превращается в тепло. Кроме того, для обеспечения оптимального уровня функционирования необходимо подключить мощный резистор.

Если ламп несколько и они потребляют много тока, при росте мощности пропорционально квадрату тока подключать резистор не целесообразно с точки зрения затрат на электроэнергию. В подобных ситуациях его заменяют неполярным конденсатором с мощностью от 400 В. Основное преимущество – отсутствие рассеивания мощности, недостаток – хранение после отключения остаточного заряда. Он устраняется присоединением дополнительного разряжающего сопротивления.

Чтобы подключить несколько светодиодных лампочек, используется последовательное соединение через конденсатор. Важно, чтобы все источники света были одинаковые. Емкость накопителя нужно определять в зависимости от количества диодов.

Не допускается параллельное подключение светодиода к сети 220 В.

Пульсация

Пульсация наблюдается у светодиодов, оснащенных драйвером низкого качества. Чаще всего для нормального функционирования не достаточно емкости встроенного конденсатора.

Как уменьшить пульсацию

Для снижения пульсации теоретически можно запитать диод от мощного конденсатора-накопителя (емкость от 100 мкф). Но он дорогой и обладает сравнительно большими размерами. При его замене резистором одновременно с пульсацией снижается уровень освещенности и КПД. Плюс – продление срока службы светодиода.

Расчет емкости сглаживающего конденсатора

Накопитель заряда для сглаживания пульсаций чаще всего электролитический, обладающий большой емкостью.

Внимание! Чтобы его правильно подключить к выпрямителю, важно соблюдать полярность. Если выпрямителя нет, нужно рабочий ноль подключить к лампе, фазу 220 В – к накопителю. Провод заземления тоже подключается к светильнику.

Для расчета емкости используется формула: C=4.45*I/U-UД, где:

  • I – ток, проходящий через диод (а миллиамперах);
  • U=310 В (амплитудное напряжение электросети);
  • UД – снижение напряжения в светодиодной лампе.

Как повысить КПД

КПД схемы зависит от эффективности светодиодной лампочки и выпрямителя. Самый низкий КПД у ламп «кукуруза» и тех, которые оснащены матовым рассеивателем света.

Если диоды располагаются с одной стороны, КПД приближается к 100%.

Самый низкий показатель из-за превращения электроэнергии в тепло будет, если схема подключения светодиода сети 220 вольт предусматривает использование резистора.

Если вместо него подключить конденсатор-накопитель, превращающий электроэнергию в реактивную мощность, КПД повышается.

Расчет гасящего конденсатора для светодиода

Лучше всего подключать к светодиодной лампе специальный гасящий конденсатор Х2 (пленочный) на 220 В (лучше 250).

Для расчета используется формула: C=3200*I/Uвх (если в схеме нет стабилизатора) или C=3200*I/, где:

  • I – ток на входе;
  • Uвх=220;
  • U – напряжение на стабилизаторе.

Важные сведения о конденсаторах

Конденсаторы-накопители используются в сети 220 В:

  • в роли блока питания (если прибор маломощный);
  • для согласования нагрузок;
  • для сглаживания напряжения;
  • для сглаживания силы тока.

Любой из них состоит из 2-х токопроводящих пластин и разделяющего диэлектрика. Заряд копится на пластинах, но не перемещается между ними. Форма может быть цилиндрическая, плоская, сферическая. Диэлектриком служит промасленная бумага, пленка, стекло, слюда, оксиды тантала и алюминия, электролиты.

Конденсаторы с классом защиты X2 предназначены для работы при температуре -40-+110оС с напряжением 250-310 В. Емкость 0.001-2.2 мкФ, основное достоинство – способность выдерживать повышенные нагрузки, вызванные коммутативными процессами или молнией.

Читайте также:  Падение напряжения: при нагрузке, порядок расчета и способы определения

Расчет резистора для светодиода

Сопротивление резистора для 220 В определяется по формуле: R=(U-Uлед)/I, где:

  • U=220;
  • Uлед – вольтаж светодиодной лампочки, указанный в паспорте;
  • I – ток диода (в миллиамперах).

Полученное значение чаще всего округляется до ближайшего из доступных.

Основные выводы

Подключить своими руками светодиод (несколько диодов) с использованием резисторов и накопителей заряда целесообразно, если у них небольшая мощность. Такие источники света предназначены для индикации или подсветки. Для мощных ламп эти схемы не подходят.

Если все же нужно подключить небольшую лампочку к сети 220 В, важно правильно подобрать параметры всех элементов. Высокое напряжение переменного тока быстро разрушает те из них, которые неспособны пропускать обратный ток. Залог успеха – ограничение амплитуды и грамотное определение амортизационного запаса. Немаловажно так же качество диодов и других деталей.

Мастер-ломастер

Популярные статьи

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину – в обратную) к нему приложится полное амплитудное напряжение сети – 315 вольт! Откуда такая цифра? 220 В – это действующее напряжение, амплитудное же в <корень из 2>= 1,41 раз больше.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так – вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение – не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I – необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303

= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален – напряжение питания такого светодиода может лежать в пределах от З до 14 вольт – для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

      • Компактное устройство световой сигнализации
      • Широкий диапазон питающего напряжения (вплоть до 14 вольт)

    • Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно – 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию – мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора – он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Чтобы ваше устройство защитить от случайного замыкания или перегрузки следует ставить предохранители.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Ссылка на основную публикацию