Греются ли светодиодные лампы для дома: особенности конструкции и причины нагрева

Почему и как сильно нагреваются светодиодные лампы

Современные осветительные приборы заметно отличаются от привычных ламп накаливания по всем параметрам. Особенно заметна разница у светодиодных экземпляров, ставших наиболее популярными и востребованными благодаря удачному сочетанию свойств. Одним из преимуществ ЛЕД устройств считается практически полное отсутствие нагрева, но этого не подтверждает ни теория, ни практика. Рассмотрим, насколько сильно нагреваются светодиодные лампы, и откуда в них берутся излишки тепла.

Несколько слов о конструкции

Устройство светодиодной лампы значительно отличается от традиционных конструкций светильников. LED конструкции представляют собой полупроводниковые приборы, в которых происходит выработка света посредством рекомбинации электронов на границе p-n перехода. Источник света — кристалл, состоящий из трех сверхтонких пластин, образующих p-n-p переход. При контакте электрона с границей каждый раз появляется фотон света. Для получения ровного и стабильного излучения необходимо создавать максимально тонкий средний слой, способствующий возникновению туннельного эффекта. Один такой кристалл способен выдавать ограниченное количество светового потока, но при соединении нескольких элементов излучение заметно усиливается.

Каждая лампа содержит несколько кристаллов (чипов). Они устанавливаются на печатной плате, представляющей собой алюминиевую пластину. Плата крепится к радиатору, обеспечивающему отвод тепла от кристаллов. Внутри радиатора установлен драйвер — блок питания, преобразующий сетевые 220 В переменного тока в 12 В постоянного напряжения. Конструкция драйвера основана на ШИМ-модуляции, что позволяет сделать схему миниатюрной, умещающейся в колбе.

Между радиатором и цоколем устанавливается пластиковое основание из материала, обладающего высокими диэлектрическими показателями. Чипы и печатная плата накрыты прозрачным (чаще всего, матовым) пластиковым колпаком, защищающим чипы от механических воздействий. Большинство ЛЕД приборов изготавливают в традиционном формфакторе ламп накаливания, что позволяет устанавливать их в старые и привычные люстры.

Почему выделяется тепловая энергия

Если коротко, причиной выделения тепловой энергии является КПД лампы. Он находится в пределах 30-40%, именно такая часть затраченной энергии уходит на излучение света. Остальные 60-70% энергии идут на нагрев кристалла.

Выделение тепловой энергии является побочным эффектом от взаимодействия электронов с дырками в зоне p-n перехода. Причем, степень тепловыделения возрастает с увеличением мощности кристаллов. Если светильник состоит из большого количества чипов, то и греются они, соответственно, сильнее. Излишки тепла отрицательно влияют на состояние кристаллов — они выгорают, теряют яркость свечения и в конце концов перестают излучать свет.

Важно! Эффективность работы чипа зависит от состояния стенок слоев, составляющих p-n переход. Чем меньше они имеют изъянов — микроскопических ямок, выбоин, неровностей — тем больше возникнет фотонов. Каждая выбоина на поверхности полупроводника создает помеху правильному движению электрона. Вместо образования фотона света выделяется некоторое количество тепла. Отсюда можно сделать вывод о качестве чипа и лампы в целом — чем лучше отработана технология сборки кристаллов, тем ярче будет свечение и меньше нагрев.

Тепло от кристалла передается алюминиевой плате, которая, в свою очередь, отдает энергию радиатору. Это и дает некоторый нагрев, свойственный всем светодиодным осветительным приборам. Необходимо учитывать, что сравнивать температуры ЛЕД и ламп накаливания нецелесообразно, поскольку они работают на разном принципе. Для первых нагрев является следствием неудачного контакта электронов с границей p-n переходов, вторые работают на принципе свечения нагревающейся вольфрамовой нити. Это означает, что тепло светодиодов — побочный эффект, а для ламп накаливания это одно из условий функционирования. Чем массивнее радиатор и плотнее контакт с ним платы, тем эффективнее будет рассеиваться нагрев кристаллов ЛЕД устройства.

Какая температура нагрева считается нормальной

Говорить о норме нагрева светодиодных ламп сложно. Есть определенные пределы, которые принято считать рабочим диапазоном температуры ЛЕД конструкций — от 60° до 70°, хотя встречаются образцы с меньшим или большим нагревом. Показатели каждого вида светодиодов зависят от разных факторов:

  • мощность лампы;
  • количество чипов, установленных на плате;
  • размер и эффективность контакте радиатора с платой;
  • режим работы светодиодов.

Любая светодиодная лампа со временем теряет яркость свечения, или, как говорят, деградирует. Причиной этого явления считается перегрев всех чувствительных деталей. Важно, что проблемным узлом часто оказывается не чип, а другие элементы конструкции — например, детали драйвера. Нормой считается деградация в пределах 70%, большие показатели свидетельствуют о бракованной лампе или несоблюдении производителем требований технологии.

Примечательно, что разница рабочих температур двух светодиодов буквально в 5-10° вызовет ускорение деградации более нагретого прибора на 50-60%. Также необходимо знать, что существуют специальные модели светодиодных ламп, рабочая температура которых превышает 100°. Они используются в особых условиях и не продаются вместе с бытовыми типами светильников.

Есть ли лампочки, которые не нагреваются

Выбор лампы, которая гарантированно не перегреется и не доставит хлопот владельцу, является важной задачей. Если в квартире установлен натяжной потолок из ПВХ пленки, горячие поверхности светильников быстро выведут полотно из строя. Из всех существующих разновидностей светильников могут быть использованы только два типа:

Степень нагрева обоих видов ламп примерно одинакова и зависит от многих факторов. При этом, люминесцентные светильники греются преимущественно в районе цоколя, тогда как эпицентр нагрева светодиодных ламп находится в районе установки чипов, т.е. в центральной части колбы. Это обстоятельство, в сочетании с другими преимуществами, вывело ЛЕД лампы в уверенные лидеры среди всех альтернативных вариантов.

Интересно! Отыскать лампу, которая совершенно не нагревается, невозможно. Однако, можно выбрать светильник с наименьшим показателем рабочей температуры. Как правило, это лампы, изготовленные известными и надежными производителями, обычно из Европы. Стоимость таких приборов довольно высока, но и степень надежности гораздо выше, чем у продукции большинства китайских фирм.

Существуют филаментные светодиодныве конструкции, которые реалистично имитируют обычные лампы накаливания. Они нагреваются меньше — средняя температура колбы составляет 50—60°, что достигается с помощью заполнения корпуса специальными газами. Для тех пользователей, кому важно найти самые «холодные» светодиодные приборы, можно посоветовать использовать филаментные виды светодиодных ламп. Все остальные разновидности практически не отличаются друг от друга по степени нагрева. Изготовители не указывают значение рабочей температуры, поэтому рекомендовать определенные модели невозможно.

Основные выводы

Светодиодные лампы нагреваются во время работы, как и все остальные виды светильников. Однако, степень нагрева значительно ниже, чем у других конструкций. Она зависит от различных факторов:

  • мощность светильника;
  • качество кристаллов;
  • режим работы лампы.

Конструкций, совершенно не греющихся во время работы, не существует. КПД любого светильника наглядно демонстрирует соотношение светового потока и рассеивания приложенной энергии, которая рассеивается в виде тепла. Светодиодные приборы обычно греются до 60-70°, что не представляет пожарной опасности и не выводит из строя полотно натяжного потолка. Свое мнение о нагреве светодиодных ламп излагайте в комментариях.

Греется светильник точечный в потолке из ПВХ панелей. Решение проблемы

Нежданный сюрприз при установке точечного освещения гарантирован многим. Как он проявляется? Сильно греется светильник, так как лампа передает избыточное тепло на корпус. А теперь представьте, что осветительный прибор вмонтирован в подвесной (натяжной) потолок из панелей ПВХ (МДФ или вагонки). Чем это чревато? В лучшем случае — расплавлением и деформацией посадочного места.

Чтобы перестраховаться и приобрести безопасные точечные светильники для подвесных потолков, нужно знать характеристики конкретных ламп освещения и ознакомиться с объективными отзывами людей, пользующимися ими. К сожалению, не задумываясь об избыточном нагреве, я лично столкнулся с данной проблемой. После покупки светильников под цоколь GU5.3, лампы к ним подбирались лишь исходя из цены (дешевой) и мощности (50 Вт). А после их установки в потолок из ПВХ панелей, было обнаружено, что по истечении 10 — 15 минут работы ламп, к корпусам светильников невозможно дотронуться рукой. Они настолько нагревается, что дальнейшее использование вмонтированных в них ламп (в конкретном случае — галогенных) становиться небезопасным.

Почему греется светильник с галогенными лампами

Чтобы разобраться в причинах нагревания точечного светильника, необходимо изучить конструкцию и принцип работы галогенной лампы. Конструктивно данная лампа представляет собой резервуар, дополненный галогенидами (парами йода и брома). По сути, это та же лампа со спиралью накаливания. Принципиальное отличие лишь в наличии буферного газа, благодаря которому температура спирали из вольфрамовой проволоки повышается.

Конструкция галогенной лампы:

a — низковольтная капсульная лампа.
b — лампа с отражателем для встраиваемых светильников.
c — лампа под патрон с резьбой Эдисона.
1 — вольфрамовая нить (спираль).
2 — стеклянная колба.
3 — электроды.
4 — контактная группа.
5 — отражатель (рефлектор).

Принцип работы галогенной лампы (галогенный цикл):

  • Галогены (йод или бром) вступают в реакцию с вольфрамом, не давая ему оседать на колбе.
  • Обратный процесс происходит вблизи тела накала, где соединения при нагреве распадаются, и атомы вольфрама возвращаются на спираль.

Несмотря на то, что галогенный цикл значительно улучшает производительность и срок эксплуатации, все же главным недостатком ламп данного типа является их высокая теплоотдача.

Температура нагрева галогенной лампы в зависимости от потребляемой мощности может достигать 150°С, что значительно сокращают область ее применения. Такие лампы не рекомендуется монтировать в точечный светильник потолка из панелей ПВХ, натяжного потолка (критическая точка нагрева для поливинилхлоридных потолков составляет 70⁰C).

Греется ли светодиодная лампа

Основной элемент светодиодной (LED) лампы — светоизлучающий диод. В зависимости от мощности лампы, таких диодов на корпусе может быть смонтировано от нескольких до нескольких десятков штук.

Светодиод представляет собой полупроводник, издающий свечение при прохождении через него электрического тока в одном направлении. Данный диод имеет узкий спектр излучения, зависящий от химического состава полупроводника. Более детально на конструкции и принципе работы останавливаться не будем. Раскроем лишь основной интересующий вопрос — греются ли светодиодные лампы.

Светодиодные лампы нагреваются — это факт. Но, в отличие от обычных и галогенных ламп накаливания, температура корпуса светодиодной лампы в рабочем состоянии не достигает критических значений и колеблется в пределах от 15°C до 70-80°С.

Почему греются светодиодные лампы? Тепло в процессе работы выделяется на кристалле полупроводникового перехода. Если не отводить тепло от данной площадки, то кристалл перегревается и перегорает. Поэтому, светодиоды в LED лампах устанавливаются на печатной плате, имеющей хорошие показатели теплопроводности. Печатная плата в свою очередь крепится к радиатору, который аккумулирует и постепенно выводит излишки тепла.

Помимо низкой теплоотдачи LED лампы выделяются минимальным потреблением электроэнергии, незначительной восприимчивостью к циклам включений/выключений и высоким сроком службы (от 20 000 до 100 000 тысяч часов работы).

Читайте также:  Увеличение мощности электроэнергии в частном доме до 30 кВт: порядок и документы

Единственное обстоятельство, которое может заставить задуматься перед покупкой светодиодов высокая цена. Однако, учитывая что светодиодные лампы служат долго и потребляют в 5 — 6 раз меньше электроэнергии, разница в цене вполне оправдана.

Какую лампу использовать в подвесном потолке из панелей ПВХ

Точечное освещение в подвесных конструкциях из панелей ПВХ (или натяжных потолках) должно соответствовать ряду требований. Основное — температура нагрева лампы и корпуса светильника. Материал рассматриваемых потолков, обладая низкой термостойкостью, под воздействием больших температур может пожелтеть, покрыться пятнами, растрескаться и утратить эластичность. Уберечься от данных деформаций можно подобрав оптимальный источник света. На личном примере, выбирая межу галогенной или LED лампой, оптимальным оказался последний вариант.

Определившись, что температура нагрева светодиодных ламп невысокая, а цена в 2 — 3 раза выше галогенных образцов, дополнительно рекомендуется изучить полный сравнительный анализ:

КритерийСветодиодные лампы (LED)Галогенные лампы
Принцип работыВ основу светодиодного освещения заложен принцип работы полупроводников. Энергия образуется в ходе движения положительных и отрицательных зарядов, и максимальная ее часть выделяется в виде фотонов видимого света.Принцип действия схож с работой лампы накаливания. Вольфрамовая спираль является телом накаливания в галогенных лампах. Она накаливается до свечения под воздействием электрического тока. Галогениды, находящиеся в колбе со спиралью возвращают вольфрамовые испарения к телу накаливания, значительно продлевая работоспособность лампы.
Наполнение колбы лампыНаполнение колбы не имеет значение, так как свет исходит непосредственно от диодов и не имеет химической составляющей.Внутри колбы вакуум или инертный газ (азот, аргон, криптон). Вольфрамовая нить дополнена активными веществами, которые отвечают за химический цикл.
Нагревание в процессе свеченияСветодиодные лампы имеют минимальный нагрев – до 70°С.У галогенных ламп сравнительно высокая теплоотдача — 150°С.
Распределение и потребление электроэнергииПочти вся электроэнергия направляется на образование фотонов света. Энергопотребление в 8 — 10 раз ниже, чем у обычных ламп накаливания.Большая часть энергии потребляется на накаливание нити, и незначительная — на образование света. Энергопотребление на 20-50% ниже, чем у обычных ламп накаливания.
Срок службыОт 30000 до 100000 часов работы.От 2000 до 2500 часов работы.
Эквивалент мощности (Ватт)Для замены лампы накаливания в 100 Ватт, потребуется светодиодная лампа мощностью 10 Ватт.Для замены лампы накаливания в 100 Ватт, потребуется галогенная лампа мощностью 60 Ватт.
Яркость (Lm)800 Lm.700 Lm.
Варианты оттенка светового потокаСвет может быть теплого, нейтрального или холодного (белого цвета), цветным (в зависимости от диодов).Теплая, близкая к белому цветовая тональность. Лампы обладают высокой цветопередачей.
Время развития максимальной яркости2-3 секунды.2-3 секунды.
ОграниченияНе стоит использовать LED лампы в условиях, где необходимо равномерное распределение света, так как светодиоды дают строго направленный световой поток.Лампы сильно нагреваются, поэтому не допускается их применение в пожароопасных светильниках и люстрах. Также не стоит использовать их в сетях с сильными скачками напряжения.
Температурный диапазон работы-90 +200°С.-130 +150°С.
Экологическая безопасностьБезопасны.Излучают небольшое количество ультрафиолета.

В заключение стоит отметить, что решением проблемы с сильно греющимися галогенными лампами была их замена на светодиодные энергосберегающие лампы. Конкретная модель представлена на заглавном изображении к данному материалу (ориентировочная стоимость 65 рублей). Ее мощность 5 Вт, что соответствует 35 Вт для галогенной. В результате, светильник почти не нагревается, а свет излучается более яркий по сравнению с ранее установленными галогенными лампами мощностью в 50 Вт. Также, при работе галогенных ламп пространство над потолком настолько освещалось, что панели ПВХ просвечивались. Со светодиодами данные просветы исчезли.

Греются ли светодиодные лампы?

В продаже LED-лампочки появились не так давно, поэтому вопрос о том, нагреваются ли светодиодные лампы, беспокоит многих. Чтобы найти ответ, необходимо понять конструкцию осветительных приборов на основе светоизлучающих диодов (LED).

Несколько слов о конструкции

LED-лампы представляют собой сложный электронный прибор, конструкция которого делится на несколько частей:

  • Рассеиватель. Представляет собой стеклянную или пластиковую колбу, которая служит для равномерного рассеивания светового потока.
  • Чипы – излучающие свет диоды.
  • Печатная плата – площадка, на которой смонтированы светодиоды. Выполняется из материала с высоким показателем теплопроводности.
  • Радиатор – конструкция из материала с высокой теплопроводностью. Служит для отвода тепла.
  • Драйвер – блок питания светодиодов, служит для преобразования переменного напряжения 220 вольтовой электросети в питание, необходимое для нормальной работы светодиодов.
  • Цоколь – немаловажный элемент, служащий для соединения лампочки с ламповым патроном.

Из конструкции видно, что светодиодные лампы греются, а для отвода выделяемого тепла устанавливается радиатор из специального материала с высокой теплопроводностью.

Радиатор в LED-лампочке предназначен для отвода тепла от единственной нагревающейся ее части – группы светодиодов. В данном световом приборе не греются ни колба, ни цоколь (при условии нормального контакта с патроном). Выделение тепловой энергии происходит лишь на кристаллах светодиодов, от них и отводится тепло.

Почему выделяется тепловая энергия?

Как и у прочих осветительных элементов, коэффициент преобразования потребляемого электричества в свет у светодиодов не достигает 100%. Современные модели обладают КПД в районе 30–40%. Остальная часть потребленной электроэнергии рассеивается в виде тепла. Чтобы понять, почему греется светодиодная лампа, необходимо рассмотреть ее светоизлучающие элементы более детально.

Светодиоды имеют совершенно другой физический принцип работы, отличный от нити накала. Поэтому LED лампочки не греются подобно лампам накаливания и не разогревают вокруг себя пространство. Светодиод – это полупроводник, а тепло выделяется на кристалле полупроводникового перехода. Если не отводить тепло от этой площадки, то кристалл перегревается, что приводит к его выгоранию. В светодиодных лампочках используются мощные светодиоды, сконструированные с применением сразу нескольких кристаллов. Отвод тепла от таких излучающих свет диодов особо важен. Поэтому полупроводниковые кристаллы мощных светодиодов монтируются на специальной подложки из материалов с высоким показателем теплопроводности. Светодиоды, в LED лампе, устанавливаются на печатной плате, которая также имеет хорошие показатели проводимости тепла. Печатная плата крепится к радиатору. В целом вся эта конструкция обеспечивает эффективный отвод тепла от полупроводникового перехода и обеспечивает долгий срок службы светодиодов.

Из вышесказанного вытекает другой вопрос — какова температура нагрева светодиодной лампы? Этот показатель не имеет точной цифры, так как зависит от многих параметров: температуры окружающий среды, материалов радиатора, мощности лампочки, производителя, качества сборки. Если говорить о среднем значении, то этот показатель находится на уровне 65–70 градусов по шкале Цельсия.

Какие лампочки не нагреваются?

С точки зрения физики, любая лампочка – это преобразователь электрической энергии в световую. При этом в свет трансформируется не более 40% потреблённой мощности. Остальная энергия рассеивается в виде тепла в окружающее пространство. Отсюда следует, что лампы всех типов нагреваются во время работы и чем меньше КПД, тем больше тепла они выделяют. Например:

  • верхняя часть колбы лампы накаливания на 100 Вт разогревается до 280°C, а цоколь – до 70°C;
  • компактная люминесцентная лампа на 15 Вт имеет наибольший нагрев у основания, там, где находится спираль – до 130°C. Температура цокольной части, где расположена ЭПРА не превышает 60°C;
  • в светодиодных лампах больше всего нагревается металлопластиковая часть корпуса (до 60-75°C), которая служит радиатором для светодиодов.

Немного о достоинствах LED-ламп

Лампочки на основе LED – самые экологически чистые и безопасные из всех представленных сегодня на рынке видов ламп. Они не содержат паров ртути, как люминесцентные, и не взрываются с разбрасыванием массы осколков, как современные низкокачественные лампочки накаливания.

Срок службы светодиодного светильника сегодня измеряется многими десятками тысяч часов. Поэтому его более высокая стоимость на длительном периоде времени компенсируется значительной экономией электроэнергии.

Проблема перегрева осветительных светодиодов и пути ее решения

Если сравнивать со стремительно уходящими в прошлое источниками света, то светодиодные источники имеют всего один, но крайне серьезный изъян. Их долговечность и надежность в значительной степени зависят от эффективности отвода тепла от излучающих свет компонентов. Поэтому схема защиты светодиода от перегрева — важная составная часть любой качественной светодиодной системы освещения.

Среднестатистический осветительный светодиод десятикратно превосходит по энергоэффективности (экономичности) традиционную лампочку с нитью накаливания. Однако, если светодиод не установить на радиатор достаточной площади, то он скорее всего быстро выйдет из строя. Принято считать, не вдаваясь в подробности, что более эффективные осветительные светодиоды нуждаются в более эффективном отводе тепла чем обычные.

Давайте, тем не менее, рассмотрим проблему более глубоко. Оценим два фонаря: первый — галогенный, второй — светодиодный. И уже после — обратим внимание на способы сохранения долговечности светодиодов и продления жизни их драйверам. Дело в том, что защитная часть светодиодной системы освещения должна обеспечить безопасное функционирование как светодиодам, так и схемам — драйверам.

К примеру у нас имеется два фонаря. Оба устройства дают по 10 Вт световой мощности. Разница лишь в том, что прожектор на галогенной лампе требует 100 Вт электрической мощности, а светодиод — всего 30 Вт.

Мы знаем, что светодиоды эффективнее по производимому свету примерно в 10 раз, но в реальности они крайне чувствительны к высоким температурам, и для них поэтому очень важен температурный режим, при котором происходит преобразование энергии электрического тока – в свет.

Для светильника с галогенной лампой рабочая температура даже в +400 °C является безопасной нормой, в то время как для светодиодов температура кристалла в +115 °C уже критически опасна, а максимальная температура корпуса диода составляет всего +90 °C. Поэтому светодиоду нельзя давать перегреваться, и на то есть несколько причин.

С повышением температуры светоизлучающего перехода, световая эффективность светодиода понижается, и это зависит как от конструкции светодиода, так и от состояния окружающей среды. К тому же светодиоды в принципе отличаются отрицательным температурным коэффициентом прямого падения напряжения на переходе. Это значит, что с увеличением температуры перехода, прямое падение напряжения на нем уменьшается. Обычно данный коэффициент варьируется от -3 до -6 мВ/К.

Таким образом, если при 25 °C прямое падение напряжения на светодиоде составляет 3,3 В, то при 75 °C оно будет уже 3 или менее вольт. И если драйвер светодиода не уменьшает по мере роста температуры напряжение на всех светодиодах сборки, то в один прекрасный момент ток станет поддерживаться неадекватно высоким, что приведет к перегреву, перегрузке, дальнейшему снижению прямого падения напряжения, и еще более быстрому нарастанию температуры кристалла. Дешевые светодиодные светильники с резистивным ограничением тока часто проявляют данный недостаток в самый неожиданный момент.

Читайте также:  Кабель для электрической плиты: особенности подключения и заземления плиты

Допуски по колебаниям напряжения блока питания в сочетании с различиями в прямом падении напряжения на светодиоде (на этапе производства светодиоды не идеально одинаковы по данному параметру), и в связи с отрицательным температурным коэффициентом падения напряжения — в любой момент эти факторы в совокупности могут вызвать нарушение безопасного режима функционирования светодиода и спровоцировать скатывание к его саморазрушению.

Конечно, если конструкция светодиодного светильника (особенно — радиатора) достаточно надежна, то кратковременными снижениями яркости можно пренебречь, так как они очень редки и перегревы эти кратковременны. Но если перегрев продолжителен, то превышение температуры сразу превращается в настоящую угрозу для светильника.

Причины выхода светодиодов из строя при их перегреве

Светодиоды разрушаются от перегрева по нескольким причинам. Первая причина — изменение механического напряжения внутри светоизлучающего кристалла и монолитной светодиодной сборки. Вторая — нарушение герметичности, проникновение влаги и окисление. Защитный эпоксидный слой деградирует, происходит расслоение на границах, контакты кристалла испытывают коррозию.

Третья — рост количества дислокаций в кристалле ведет к изменению путей тока и возникновению точек превышения плотности тока и, соответственно, к перегреву этих точек. Наконец — явление диффузии металлов на контактах при повышенной температуре, что также в конце концов приводит к неработоспособности светодиода.

Разработчики светодиодов всеми силами пытаются свести к минимуму данные факторы отказа, и поэтому все время технологически совершенствуют производственный процесс. Тем не менее из-за перегрева отказы все равно неизбежны, хотя и становятся реже с совершенствованием производственного процесса.

Механическое давление — самая частая причина преждевременного выхода светодиодов из строя. Суть в том, что при перегреве герметик размягчается, электрические контакты и соединительные проводники смещаются от «заводского» положения, а когда температура наконец падает, происходит охлаждение, и герметизирующее вещество вновь застывает, но при этом давит на уже немного смещенные соединения, что в итоге приводит к явному нарушению первоначально равномерной проводимости. Благо, светодиоды изготовленные без соединительных проводников практически лишены данного недостатка.

Паяные соединения между светодиодом и подложкой также испытывают похожую проблему. Регулярные циклические, не заметные на глаз, размягчения и затвердевания заканчиваются появлением трещин в пайках и нарушением исходного контакта. Вот почему встречаются отказы светодиодов по причине разрыва цепи питания, причем разрыв этот часто не виден. Чтобы предотвратить данную проблему, можно максимально уменьшить разницу между безопасной рабочей температурой светодиода и температурой окружающей среды.

Мощные светодиоды (потребляющие больше электрической мощности) дают больше света, но их световая отдача все же имеет ограничение. Вот почему у потребителей и производителей часто возникает опасный соблазн эксплуатировать светодиоды в светильнике на полную мощность, дабы получить максимально возможную яркость. Но это действительно опасно, если не обеспечить достаточно эффективного охлаждения.

Разумеется, дизайнеры хотят создавать элегантные светильники интересных форм, однако они порой забывают что необходимо обязательно обеспечить соответствующее движение воздуха и адекватный отвод тепла — это для светодиодов зачастую самое главное, следующее за стабилизированным и качественным источником питания.

Да и непосредственно установка светодиодных светильников важна. Если один светильник установлен над другим таким же мощным, то поток воздуха от нижнего светильника может быть замедлен верхним, и нижний будет находиться поэтому в худших температурных условиях. Либо например теплоизоляция в стене или на потолке помещения может помешать теплоотводу, даже если при конструировании светильника все тепловые расчеты были выполнены идеально и технологически он изготовлен максимально правильно. Все равно вероятность отказа повышается просто из-за необдуманного и неграмотного монтажа готового изделия.

Одно из достойных решений проблемы перегрева светодиодов — включение в схему драйвера температурной защиты с обратной связью именно по температуре. Когда температура излучателя по какой-нибудь причине опасно повысилась — для понижения мощности, с целью удержания температуры внутри безопасного диапазона, автоматически уменьшается ток.

Простейшее решение — добавить в схему термистор с положительным температурным коэффициентом (можно и с отрицательным температурным коэффициентом, но тогда схема должна инвертировать сигнал в цепи обратной связи).

Пример термической защиты с использованием термистора

Для примера рассмотрим схему на базе специализированного микроконтроллера с токоограничительной цепью. Когда температура поднимается выше определенного порога (задается термистором и резисторами), термистор с положительным коэффициентом сопротивления, закрепленный на радиаторе вместе со светодиодами, увеличивает свое сопротивление, что приводит к соответствующему уменьшению тока в выходной цепи драйвера.

В этом плане очень удобны схемы драйверов с регулировкой яркости по принципу ШИМ (широтно-импульсной модуляции), позволяющие одновременно и вручную регулировать яркость, и защищать светодиоды от перегрева.

Решение с термистором удобно тем, что изменение тока, а значит и уменьшение яркости, будет в такой схеме происходить плавно, незаметно для глаз и нервной системы, а значит ничего не будет мерцать и не вызовет у окружающих людей и животных раздражения. Температура верхней границы просто определяется выбором термистора и резистора. Это гораздо лучше решений с термодатчиками, которые просто резко размыкают цепь и дожидаются пока радиатор остынет, а потом снова включают освещение на полную яркость.

Специализированные микросхемы-драйверы светодиодов, безусловно, стоят денег, однако получаемые взамен надежность и долговечность работы светильника многократно окупят это вложение.

Стоит лишь вспомнить, что при соблюдении нормального температурного режима эксплуатации светодиодов их срок службы измеряется десятками тысяч часов, тогда и вопросы касательно материальных затрат на «правильный» драйвер отпадают сами собой.

Важно лишь обеспечить самому драйверу постоянную невысокую температуру, для этого всего лишь не нужно размещать его близко к радиатору светодиодов. Не правильно делают те, кто донельзя стремится уплотнить размещение компонентов внутри корпуса прожектора. Лучше вывести корпус драйвера отдельным блоком. Здесь безопасность и предусмотрительность — залог долговечности светодиодов.

Лучшие микросхемы для управления питанием светодиодов оснащены внутренними цепями защиты от собственного перегрева на тот случай если микросхема по конструктивным соображениям разработчика светильника все же должна размещаться в одном корпусе с заметно нагревающимися компонентами, такими как радиатор. Но лучше вообще не допускать перегрева микросхемы выше 70 °C и оснастить ее собственным радиатором. Тогда и светодиоды и микросхема драйвера проживут дольше.

Интересным может оказаться решение с применением двух последовательно соединенных термисторов в цепи термической защиты. Это будут разные термисторы, так как безопасные температурные границы у микросхемы и у светодиодов различны. А вот результат будет достигнут что надо — плавная регулировка яркости как при перегреве драйвера, так и при перегреве светодиодов.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Какие лампы не нагреваются при своей работе

Сегодня для освещения своего дома можно подобрать самые разнообразные источники света: от старых и проверенных ламп накаливания, до современных и экономных светодиодных лампочек. Любые светильники, будь то люстры или бра, могут использовать в качестве источника света любую модель, подходящую под цоколь.

Во время своей работы лампочки имеют тенденцию к нагреванию. Одни нагреваются сильнее, чем другие, что определяет одно из основных критериев выбора. Во многих ситуациях люди, выбирая лампочки для люстры и других типов светильников, не задумываются об этой составляющей. Но иногда такой подход может привести к негативным последствиям, особенно в ситуации натяжных потолков. Наша статья расскажет вам про лампочки, что в процессе своей работе не нагреваются и почему об этом обязательно стоит задумываться при наличии натяжных потолков.

Начнем с потолков

Натяжные потолки сегодня стали довольно популярным и частым явлением в наших домах и квартирах. По распространенности они сравнимы разве что с гипсокартонными конструкциями.

Обратите внимание! Особенностью любых натяжных потолков является их основа или натяжное полотно. Оно состоит из специального материала (ПВХ пленки), который при нагревании специальным строительным феном способен принимать натянутое положение вдоль всей площади потолка.

Поливинилхлорид, которые является основой такой пленки, довольно плохо переносит нагрев после своей установки. Поэтому здесь и возникает необходимость в правильном подборе истопника света для люстр и точечных светильников, которые в дальнейшем будут установлены на конструкции для освещения помещений.
Неправильный подбор лампочки или неверное размещение люстр (бронзовых, хрустальных и т.д.) может привести к повреждению натяжных потолков. Используя лампочки, которые обладают способностью сильно нагреваться, вы можете легко повредить хрупкую структуру поливинилхлорида.

Обратите внимание! Необратимое разрушение поливинилхлоридного слоя происходят при достижении температуры 110-120оС.

Если обобщить, то такое повреждение возможно в следующих ситуациях:

  • неправильно подобранный источник света. Это самая главная причина, по которой чаще всего портится красивая глянцевая поверхность натяжных потолков. В ситуации с таким потолком специалисты рекомендуют использовать только энергосберегающие лампочки;

Обратите внимание! Энергосберегающие источники света сегодня могут использоваться в любых светильниках: от люстр (стеклянных, хрустальных, бронзовых и т.д.) до точечных светильников. Как правило, именно эти два типа осветительных приборов имеют место при установке натяжных потолков.

  • установка люстр (бронзовых, хрустальных, деревянных и т.д.) слишком близко к натяжной поверхности. Для того чтобы минимизировать негативное воздействие нагретой лампочки на структуру потолка, люстры обычно используют подвесных разновидностей. В этом случае можно снизить вред путем увеличения расстояния между источником света и поливинилхлоридной пленкой;

Обратите внимание! Вариант с установкой люстр подвесной модели не всегда уместен, так как в помещении могут быть низкие потолки. В такой ситуации приходится использовать точечные светильники, встроенные в потолок, или потолочные люстры. А это не решает проблему.

Люстра на натяжном потолке

  • установка плафонов таким образом, что они светят вверх, на покрытие натяжных потолков. Если плафоны будут размещены именно так, а не вниз, то тепловой поток станет концентрироваться на пленке, а не рассеиваться в пространстве комнаты. Это опять-таки приводит к появлению дефектов на полотне.
Читайте также:  PEN-проводник: описание, порядок разделения и типичные ошибки при установке

Самым лучшим и простым в реализации вариантом, который позволит избежать повреждения поливинилхлоридной пленки потолочной конструкции, является использование энергосберегающие источники света.

Источники света

Не все энергосберегающие лампочки, что на данный момент времени представлены на рынке осветительных изделий, имеют низкий нагрев при работе. Поэтому в данной ситуации чтобы определить, какие источники наиболее выгодны для натяжных конструкций, нужно детально рассмотреть все потенциальные варианты, так как все они в любом случае будут хотя бы немного, но нагреваться.
Все лампочки можно условно поделить на два основных вида:

  • экономные или энергосберегающие. Сюда относятся лампочки, которые в той или иной степени могут потреблять меньше электроэнергии;

Энергосберегающие источники света

  • лампы накаливания. Это первые модели источников света. Поэтому их отличает очень сильное нагревание в процессе своей работы и, вдобавок ко всему, они неэкономны в плане потребления электроэнергии. Поэтому они в любом случае не могут использоваться для подсветки помещений с натяжными потолками. Тем не менее, они еще иногда встречаются, так как подходят для люстр и других осветительных приборов по размеру цоколя.

Как видим, для натяжных потолков подходят только энергосберегающие лампочки, которые способны не только экономить энергию, но и меньше нагреваться в процессе своей работы. Но так ли это? Чтобы понять, все ли энергосберегающие источники света имеют незначительный нагрев и могут использоваться в натяжной потолочной конструкции, нужно рассмотреть их более детально.
На сегодняшний день в перечень потенциальных претендентов входят такие энергосберегающие лампы:

Каждый кандидат из приведенного перечня является более совершенной моделью, чем лампы накаливания. Но они все равно не лишены достоинств и недостатков.

Светодиодные источники света

Светодиодные лампочки на сегодняшний день считаются самыми лучшими и наиболее востребованными источниками света. Их используют не только для люстр (бронзовых, деревянных, хрустальных и т.д.) и точечных светильников, но и для настенных бра, настольных и напольных ламп и прочих видов осветительных приборов.

Огромную популярность такие лампочки получили по причине наличия у них ряда достоинств:

  • длительный период службы, который составляет около 50 000 часов. Это самые долговечные источники света из ныне существующих;
  • отличные характеристики светового потока, создаваемого светодиодами;
  • минимальное нагревание. Конечно, элементы светодиодных ламп все равно нагреваются. Но нагрев крайне незначительный и не может повлиять на натяжную поверхность, выполненную из поливинилхлорида;
  • подходит для любых типов осветительных приборов: люстр, бра, точечных светильников и т.д.;
  • это самые экономичные лампочки. При их использовании получается экономить до 90% электроэнергии;
  • возможность выбора цвета светового потока: теплый, нейтральный или холодный.

Но среди всех достоинств, которые, несомненно, очень востребованы в современном мире, у светодиодных лампочек все же имеется один недостаток, который не позволил им полностью вытеснить с рынка другие типы источников света. Это недостаток заключается в высокой стоимости светодиодной продукции. Тем не менее, она с лихвой окупится всеми перечисленными выше достоинствами. Именно такие лампочки следует использовать, если вы имеете дело с натяжными потолками.

Люминесцентные источники света

Эти лампочки могут разительно отличаться между собой как по строению, так и по техническим характеристикам. Вместе с тем, какие бы они не были, но у них имеются и общие моменты работы:

  • являются энергосберегающими. Хотя им далеко до экономичности светодиодной продукции, они в данном вопросе все же будут значительно экономичнее своих предшественников – ламп накаливания;
  • нагрев стеклянной колбы изделия в процессе работы. Несмотря на то, что нагрев здесь все же будет меньшим, чем у ламп накаливания, но этого может быть вполне достаточно для того, чтобы с течением времени привести к деформации натяжного полотна потолка. Особенно, если их разместить близко к перекрытию.

Устанавливания такие изделия на натяжном потолке, следует постараться снизить их вред, увеличивая расстояние до полотка и изменяя направленность плафонов книзу.

Заключение

Как видим, в мире не существует лампочек, которые при своей работе полностью не нагревались бы. Но светодиодные источники света максимально приблизились к этому, что делает их самым лучшим вариантом для освещения натяжных потолков.

Недостатки светодиодных ламп. Что в них плохого?

Хотя мы производим и продаём светодиодные лампы, тем не менее, нужно сказать несколько слов о тех недостатках, которые присущи светодиодным лампам вообще.

Если Вы собираетесь купить светодиодные лампы, а стоят они относительно не дёшево, то, с нашей точки зрения, Вы должны знать об их минусах. Обилие дифирамбов светодиодному освещению никак не способствует осознанному выбору – не бывает всё только хорошо. Итак,

Дорого

Решив заменить Ваши лампы накаливания на светодиодные, будьте готовы заплатить до 10 раз больше – примерно во столько раз они дороже. И это их первый и главный минус.

Высокая цена компенсируется 10-и кратной экономией электроэнергии. Кроме того светодиодные лампы гораздо реже перегорают, а это дополнительная экономия на цене новых ламп накаливания на замену. И не забудьте о своём времени и лёгкой головной боли – вспомнить, что нужно купить лампочку взамен сгоревшей, вспомнить, какой у неё цоколь, а ещё бы неплохо про запас в ту комнату, но какие туда лампы нужны. И т.п.

В зависимости от режима использования момент окупаемости может наступить уже через 6 месяцев после замены ламп на светодиодные.

Тут нужно сделать одно замечание. В последнее время на рынке очень много предложений светодиодных ламп по бросовым ценам. Но не стоит обольщаться на этот счёт. Мы купили несколько таких изделий, разобрали и протестировали их и получили очень неутешительные результаты .

Большой размер

Это второй недостаток. Светодиодные лампы по всем параметрам больше условно аналогичных ламп накаливания. Они шире, длиннее, тяжелее.

Причина этого технологическая. Лампы накаливания не боятся высокой температуры, они могут нагреваться вплоть до температур конструктивного разрушения, когда стекло или клей перестают быть твердыми. Поэтому их обычный нагрев до 100-300 градусов практически никак не сказывается на функциональности (конечно, если не касаться вопросов пожаробезопасности).

С другой стороны, светодиоды не должны нагреваться очень сильно, т.к. при нагреве существенно падает их эффективность и усиливается процесс выгорания – они тускнеют. Поэтому их нужно охлаждать, поэтому в светодиодных лампах есть радиатор. И чем мощность лампы выше, тем радиатор будет больше.

Не любую лампу можно заменить светодиодной

В некоторых случаях большой размер и радиатор приводят к тому, что отдельным лампам невозможно правильно сделать светодиодный аналог. Это также нужно записать в минусы светодиодных ламп.

Например, для свечи с цоколем миньон (E14) мощностью 60 ватт сделать достойный светодиодный аналог практически нельзя – физически не хватит места для размещения нужного радиатора, а уменьшение радиатора приведёт к перегреву.

Т.е. такая светодиодная лампа (даже если её сделать) будет либо очень большой, либо будет недолго работать из-за перегрева. В первом случае лампа не поместится в предназначенные для неё светильники, а во втором – с учётом срока службы и цены более выгодным может оказаться использование энергосберегающих или даже старых ламп накаливания.

Хотя несомненно, что спрос на лампы “чтобы была маленькая и мощная” есть. Как ответ на этот спрос на российском рынке появилось много предложений светодиодных свечей с цоколем Е14 мощностью по 6 ватт и даже по 8. Но чудес не бывает. Это почти всегда в некотором роде маркетинг. Будьте внимательны при покупке таких светодиодных ламп!

Мощная светодиодная лампа должна быть большой!

Направленный свет

Свет светодиодной лампы, как правило, имеет направленный характер. Она плохо освещает сбоку от себя и совсем плохо – сзади.

Поэтому, заменив лампы накаливания на светодиодные, в первое время можно ощущать дискомфорт от другого распределения световых потоков. Например, Ваши лампы светят в пол. Тогда потолок будет освещён только отраженным светом, и от этого будет казаться, что вообще в комнате стало темнее. Хотя это совсем не так. И через несколько дней этот эффект бокового зрения, скорее всего, больше не будет Вас беспокоить.

Не идеальная цветопередача

Коэффициент цветопередачи наших светодиодных ламп превышает отметку в 80, что вербально оценивается как “очень хорошая”. Хотя более высокий индекс имеют только лампы накаливания и естественный дневной свет, надо сказать, что это не идеальная цветопередача.

Точнее будет заметить, что это другая цветопередача. Поэтому замена на светодиодные ламп накаливания большой мощности и/или галогеновых в некоторых случаях может доставить неудобство для зрительного восприятия.

Например, интерьер с преобладанием глубоких синих оттенков (под галогеновыми лампами) после установки холодных светодиодных ламп изменит свой вид – синий цвет “съедет” в яркую фиолетовую область. И для людей, чувствительных к цвету, подобные превращения оттенков являются существенным недостатком.

Это также одна из причин, почему нельзя напрямую сравнивать лампы накаливания и светодиодные – очень много зависит от интерьера.

Мифы про светодиодные лампы

Светодиодные лампы горят вечно

Конечно, это не так. Как и любой электронный прибор, светодиодная лампа может сломаться или перестать работать должным образом.

Так что не надейтесь – светодиодные лампы Вам тоже придётся менять. Только не так часто – многократно реже.

Лампа на 2 ватта заменит 60 ватт

Этот удивительный миф принесла наша покупательница. А удивительное в нём то, что она процитировала своего электрика. Достаточно просто включить рядом эти две лампы, чтобы убедиться, что это далеко не так – современные светодиодны эффективны, но не до такой степени!

Даже если когда-либо будет достигнут теоретический предел эффективности светодиодов, то даже тогда лампа в два ватта мощности не будет давать столько же света, сколько 60-и ваттная лампа накаливания. Хотя надо признать, что она очень к этому приблизится.

На текущий же момент,

Чтобы получить что-то похожее на 60 ватт лампы накаливания, нужно взять светодиодную лампу со световой мощностью не меньше 7 ватт.

Более эффективные светодиоды существуют, но пока далеки от массового производства – их цена живёт в каком-то ином мире.

Всё ещё хотите купить светодиодные лампы?

Тогда приглашаем Вас в каталог бытовых светодиодных ламп:

Или кликните на кнопку слева и задайте свой вопрос – подробный ответ Вы получите очень быстро.

Ссылка на основную публикацию